Skip to main content

MG107: Management Analytics in the Age of Big Data

Subject Area: Business and Management

Apply now

Course details

  • Department
    Department of Management
  • Application code
    SS-MG107
Dates
Session oneNot running in 2025
Session twoOpen - 14 Jul 2025 - 1 Aug 2025
Session threeNot running in 2025

Apply

Applications are open

We are accepting applications. Apply early to avoid disappointment.

Overview

Big Data and the rise of AI technology have the potential to transform firms, markets and even entire societies. This poses significant questions: What will the managerial landscape look like as data-intensive technologies proliferate? How should managers approach data and statistical analysis in this age?

This course offers students an overview of the economic potential of Big Data and AI. It begins by describing the rise of Big Data and the burgeoning field of AI, and proceeds to consider the implications of these new technologies for managers and for society as a whole.

With this foundation, students will examine managerial decision-making using data analytics. Big Data does not solve all of managers’ problems; even with increasing amounts of data and better AI, managers still need to make decisions under incomplete information (solve statistical inference problems) and to distinguish between correlation and causation (solve causal inference problems). Finally, students will learn how to apply their new understanding of statistical and causal inference to the construction of regression models.

The course is designed to provide students with an understanding of the foundational elements of data analysis and the use of statistical thinking in the context of managerial decision-making in today’s age of big data.

It is important to note that the course is primarily conceptual and analytical, rather than technical, and does not cover programming techniques. The tools developed in the course are the interpretation and evaluation of data analytics, and managerial decision-making based on such analytics.

Key information

Prerequisites: There are no prerequisites for this course 

Level: 100 level. Read more information on levels in our FAQs

Fees: Please see Fees and payments

Lectures: 36 hours

Classes: 18 hours

Assessment: One written examination and one project on strategy identification

Typical credit: 3-4 credits (US) 7.5 ECTS points (EU)

Please note: Assessment is optional but may be required for credit by your home institution. Your home institution will be able to advise how you can meet their credit requirements. For more information on exams and credit, read Teaching and assessment

Is this course right for you?

The course is designed to provide students with an understanding of the foundational elements of data analysis and the use of statistical thinking in the context of managerial decision-making in today’s age of big data.

It will therefore be well-suited to anyone looking to embark upon a career or further studies in Business Management, Business Analytics or Consulting.

Outcomes

  • Critically evaluate the development of big data and AI technology.

  • Develop a framework for managerial decision-making under uncertainty.

  • Evaluate causal arguments and design experiments to identify causal relationships.

  • Construct and interpret multivariate regression models.

Content

Jonathan Tam, Canada

The fundamentals of my course are covered at my home institution, but the summer school course gives me an extra breadth into how the industry works. It’s been a really good experience in diversifying my skill set.

Faculty

The design of this course is guided by LSE faculty, as well as industry experts, who will share their experience and in-depth knowledge with you throughout the course.

Noam Yuchtman

Professor Noam Yuchtman

Professor of Managerial Economics and Strategy

Department

LSE’s Department of Management unites four subject areas – Employment Relations and Organisational Behaviour, Information Systems and Innovation, Managerial Economics and Strategy, and Management Science. It thereby combines the study of business and management with LSE’s renowned social sciences perspective. LSE is ranked 2nd in Europe for social sciences and management (2023 QS World University Rankings) and the Department of Management, along with the Departments of Accounting and Finance, was ranked as the UK leader for Business and Management Studies in the most recent Research Excellence Framework.

Our world-class record of multidisciplinary management research gives students a solid understanding of the global business environment. Whether learning the fundamentals of management or gaining advanced insights into specific aspects of strategy, negotiation, marketing or human resources, students will develop a competitive edge for their future career.

Apply

Applications are open

We are accepting applications. Apply early to avoid disappointment.