Residual permutation test for high-dimensional regression coefficient testing

Yuhao Wang

Institute for Interdisciplinary Information Sciences (IIIS), Tsinghua University yuhaow@tsinghua.edu.cn

Joint work with Kaiyue Wen & Tengyao Wang

May 3, 2024

Problem set up

We consider one of the most fundamental problems in statistics: regression coefficient test

Problem set up

We consider one of the most fundamental problems in statistics: regression coefficient test

$$\mathbf{Y} = \mathbf{X}\beta + \mathbf{Z}b + \boldsymbol{\varepsilon}.$$

- $(X \in \mathbb{R}^{n \times p}, Z \in \mathbb{R}^n)$: fixed-design;
- $\varepsilon \in \mathbb{R}^n$: random noise vector.

Problem set up

We consider one of the most fundamental problems in statistics: regression coefficient test

$$\mathbf{Y} = \mathbf{X}\beta + \mathbf{Z}b + \boldsymbol{\varepsilon}.$$

- $(X \in \mathbb{R}^{n \times p}, Z \in \mathbb{R}^n)$: fixed-design;
- $\varepsilon \in \mathbb{R}^n$: random noise vector.

Our goal: Test whether

$$H_0: b = 0$$
 v.s. $H_1: b \neq 0$

Types of validity

• Asymptotic validity: asymptotically correct size control as $n \to \infty$.

Types of validity

- Asymptotic validity: asymptotically correct size control as $n \to \infty$.
 - Ex: OLS fit based, Freedman and Lane (1983), residual bootstrap, DiCiccio and Romano (2017), Toulis (2019), debiased lasso;
 - Usually requires p = o(n) or some sparsity assumption on β .

Types of validity

- Asymptotic validity: asymptotically correct size control as $n \to \infty$.
 - Ex: OLS fit based, Freedman and Lane (1983), residual bootstrap, DiCiccio and Romano (2017), Toulis (2019), debiased lasso;
 - Usually requires p = o(n) or some sparsity assumption on β .

- Finite-population validity: valid size control with arbitrary *n*.
 - ⇒ Our target of interest

• ANOVA (Fisher 1921): requires ε to be i.i.d. Gaussian;

• ANOVA (Fisher 1921): requires ε to be i.i.d. Gaussian;

 Hartigan (1970), Meinshuasen (2015): symmetric around zero or rotationally invariant;

• ANOVA (Fisher 1921): requires ε to be i.i.d. Gaussian;

 Hartigan (1970), Meinshuasen (2015): symmetric around zero or rotationally invariant;

• Distribution-free valid test (Lei and Bickle, 2021): just requires ε to be exchangeable for correct size control;

• ANOVA (Fisher 1921): requires ε to be i.i.d. Gaussian;

• Hartigan (1970), Meinshuasen (2015): symmetric around zero or rotationally invariant;

- Distribution-free valid test (Lei and Bickle, 2021): just requires ε to be exchangeable for correct size control;
 - Limitation: strong assumptions on dimension of X:

$$n/p > 1/\alpha + 1$$

$$\Uparrow \text{ prespecified Type-I error}$$

$$\alpha = 0.01, n = 300: p < 3.$$

• Break the curse-of-dimensionality of Lei and Bickel (2021): Finite-population & distribution-free valid whenever p < n/2;

• Break the curse-of-dimensionality of Lei and Bickel (2021): Finite-population & distribution-free valid whenever p < n/2;

• Heavy-tail friendly: non-trivial power even when $\mathbb{E}[\varepsilon_i^2] = \infty$:

• Break the curse-of-dimensionality of Lei and Bickel (2021): Finite-population & distribution-free valid whenever p < n/2;

• Heavy-tail friendly: non-trivial power even when $\mathbb{E}[\varepsilon_i^2] = \infty$:

when $\varepsilon_1, \varepsilon_2, \ldots$ are independent with uniformly bounded (1+t)-th order moment for $t \in [0,1]$, our test can have power even when b is as small as $n^{-t/(1+t)}$.

• Break the curse-of-dimensionality of Lei and Bickel (2021): Finite-population & distribution-free valid whenever p < n/2;

• Heavy-tail friendly: non-trivial power even when $\mathbb{E}[\varepsilon_i^2] = \infty$:

when $\varepsilon_1, \varepsilon_2, \ldots$ are independent with uniformly bounded (1+t)-th order moment for $t \in [0,1]$, our test can have power even when b is as small as $n^{-t/(1+t)}$.

• Minimax rate optimality: $n^{-t/(1+t)}$ matches the minimax lower bound rate for coefficient test with heavy-tailed noises.

Numerical analysis of ANOVA's validity

Simulations for general noise:

$$m{Y} = m{X}eta + m{arepsilon}$$
 $m{Z} = m{X}eta^{m{Z}} + m{e}$

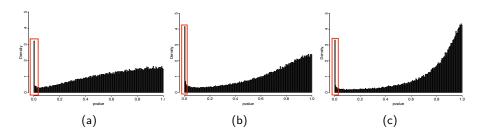
- (n, p) = (300, 100), (600, 100), (600, 200);
- X: Gaussian design, t₁ design;
- e, ε : t_1 noise, t_2 noise, Gaussian noise.

Validity of ANOVA

n	р	X type	noise type	0.01	0.005
300	100	Gaussian	Gaussian	0.0101	0.0050
300	100	Gaussian	t_1	0.0181	0.0160
300	100	Gaussian	t_2	0.0153	0.0107
300	100	t_1	Gaussian	0.0101	0.0050
300	100	t_1	t_1	0.0243	0.0208
300	100	t_1	t_2	0.0180	0.0130
600	200	Gaussian	Gaussian	0.0101	0.0049
600	200	Gaussian	t_1	0.0141	0.0122
600	200	Gaussian	t_2	0.0150	0.0104
600	200	t_1	Gaussian	0.0101	0.0049
600	200	t_1	t_1	0.0202	0.0173
600	200	t_1	t_2	0.0170	0.0120

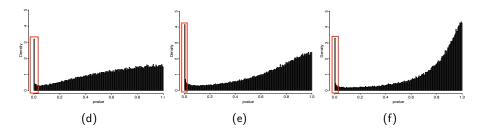
Table: empirical size with nominal levels $\alpha = 0.01$ and 0.005

Histogram of ANOVA's p-values



- (a) n = 300, p = 100, Gaussian design, t_1 noises;
- (b) $n = 300, p = 100, t_1 \text{ design}, t_1 \text{ noises};$
- (c) n = 600, p = 100, Gaussian design, t_1 noises;
- \Rightarrow highest spike in heavy-tail design + heavy-tail noise.

Histogram of ANOVA's p-values



- (a) n = 300, p = 100, Gaussian design, t_1 noises;
- (b) $n = 300, p = 100, t_1 \text{ design}, t_1 \text{ noises};$
- (c) n = 600, p = 100, Gaussian design, t_1 noises;
- \Rightarrow highest spike in heavy-tail design + heavy-tail noise.

This shows the importance of developing a distribution-free & finite-population valid test!!

① Given permutation matrices P_1, \dots, P_K :

- **1** Given permutation matrices P_1, \dots, P_K :
 - $\tilde{\boldsymbol{V}}_k \in \mathbb{R}^{n \times (n-2p)}$: orthonormal matrix orthogonal to $\operatorname{span}(\boldsymbol{X}) \cup \operatorname{span}(\boldsymbol{P}_k \boldsymbol{X})$.

- **1** Given permutation matrices P_1, \dots, P_K :
 - $\tilde{\boldsymbol{V}}_k \in \mathbb{R}^{n \times (n-2p)}$: orthonormal matrix orthogonal to $\operatorname{span}(\boldsymbol{X}) \cup \operatorname{span}(\boldsymbol{P}_k \boldsymbol{X})$.

p-value:

$$\begin{split} \phi &= \frac{1}{1+K} \left(1 + \sum_{k=1}^K \mathbb{1} \left\{ \min_{1 \leq k' \leq K} T \left(\tilde{\boldsymbol{V}}_{k'}^\top \boldsymbol{Z}, \tilde{\boldsymbol{V}}_{k'}^\top \boldsymbol{Y} \right) \leq T \left(\tilde{\boldsymbol{V}}_k^\top \boldsymbol{Z}, \tilde{\boldsymbol{V}}_k^\top \boldsymbol{P}_k \boldsymbol{Y} \right) \right\} \right) \\ &\Rightarrow \text{Projecting } \left(\boldsymbol{Y}, \boldsymbol{P}_k \boldsymbol{Y} \right) \text{ onto } \operatorname{span} (\tilde{\boldsymbol{V}}_k) \text{ & compare.} \end{split}$$

Why residual permutation test?

Classical regression residual:

$$\hat{\boldsymbol{R}}_{\boldsymbol{Y}} = (\boldsymbol{I} - \boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top})\boldsymbol{Y}$$

 \rightsquigarrow Projecting **Y** onto the space orthogonal to **X**;

Why residual permutation test?

• Classical regression residual:

$$\hat{\boldsymbol{R}}_{\boldsymbol{Y}} = (\boldsymbol{I} - \boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top})\boldsymbol{Y}$$

 \rightsquigarrow Projecting **Y** onto the space orthogonal to **X**;

 $\bullet \ \tilde{\boldsymbol{V}}_{k}^{\top} \boldsymbol{Y}$:

 \rightsquigarrow a residual by regressing **Y** onto both **X** & $P_k X$...

$$\tilde{\boldsymbol{V}}_{k}^{\top}\boldsymbol{P}_{k}\boldsymbol{Y}\overset{\text{under }H_{0}}{=}\tilde{\boldsymbol{V}}_{k}^{\top}\boldsymbol{P}_{k}\boldsymbol{X}\boldsymbol{\beta}+\tilde{\boldsymbol{V}}_{k}^{\top}\boldsymbol{P}_{k}\boldsymbol{\varepsilon}$$

$$\tilde{\boldsymbol{V}}_k^{\top} \boldsymbol{P}_k \boldsymbol{Y} \stackrel{\text{under } H_0}{=} \tilde{\boldsymbol{V}}_k^{\top} \boldsymbol{P}_k \boldsymbol{X} \boldsymbol{\beta} + \tilde{\boldsymbol{V}}_k^{\top} \boldsymbol{P}_k \boldsymbol{\varepsilon} = \tilde{\boldsymbol{V}}_k^{\top} \boldsymbol{P}_k \boldsymbol{\varepsilon}$$

$$\tilde{\boldsymbol{V}}_{k}^{\top} \boldsymbol{P}_{k} \boldsymbol{Y} \stackrel{\text{under } H_{0}}{=} \tilde{\boldsymbol{V}}_{k}^{\top} \boldsymbol{P}_{k} \boldsymbol{X} \boldsymbol{\beta} + \tilde{\boldsymbol{V}}_{k}^{\top} \boldsymbol{P}_{k} \boldsymbol{\varepsilon} = \tilde{\boldsymbol{V}}_{k}^{\top} \boldsymbol{P}_{k} \boldsymbol{\varepsilon}$$
$$\tilde{\boldsymbol{V}}_{k}^{\top} \boldsymbol{Y} = \tilde{\boldsymbol{V}}_{k}^{\top} \boldsymbol{\varepsilon}$$

• $\tilde{\boldsymbol{V}}_k$ is orthogonal to the space by $\boldsymbol{X} \& \boldsymbol{P}_k \boldsymbol{X}$ and we are under H_0 :

$$\tilde{\boldsymbol{V}}_{k}^{\top} \boldsymbol{P}_{k} \boldsymbol{Y} \stackrel{\text{under } H_{0}}{=} \tilde{\boldsymbol{V}}_{k}^{\top} \boldsymbol{P}_{k} \boldsymbol{X} \boldsymbol{\beta} + \tilde{\boldsymbol{V}}_{k}^{\top} \boldsymbol{P}_{k} \boldsymbol{\varepsilon} = \tilde{\boldsymbol{V}}_{k}^{\top} \boldsymbol{P}_{k} \boldsymbol{\varepsilon}$$

$$\tilde{\boldsymbol{V}}_{k}^{\top} \boldsymbol{Y} = \tilde{\boldsymbol{V}}_{k}^{\top} \boldsymbol{\varepsilon}$$

• We can rewrite the p-value as:

$$\phi = \frac{1}{1+K} \left(1 + \sum_{k=1}^{K} \mathbb{1} \left\{ \min_{1 \leq k' \leq K} T\left(\tilde{\boldsymbol{V}}_{k'}^{\top} \boldsymbol{Z}, \tilde{\boldsymbol{V}}_{k'}^{\top} \boldsymbol{\varepsilon}\right) \leq T\left(\tilde{\boldsymbol{V}}_{k}^{\top} \boldsymbol{Z}, \tilde{\boldsymbol{V}}_{k}^{\top} \boldsymbol{P}_{k} \boldsymbol{\varepsilon}\right) \right\} \right)$$

• $\tilde{\boldsymbol{V}}_k$ is orthogonal to the space by $\boldsymbol{X} \& \boldsymbol{P}_k \boldsymbol{X}$ and we are under H_0 :

$$\tilde{\boldsymbol{V}}_{k}^{\top} \boldsymbol{P}_{k} \boldsymbol{Y} \stackrel{\text{under } H_{0}}{=} \tilde{\boldsymbol{V}}_{k}^{\top} \boldsymbol{P}_{k} \boldsymbol{X} \boldsymbol{\beta} + \tilde{\boldsymbol{V}}_{k}^{\top} \boldsymbol{P}_{k} \boldsymbol{\varepsilon} = \tilde{\boldsymbol{V}}_{k}^{\top} \boldsymbol{P}_{k} \boldsymbol{\varepsilon}$$

$$\tilde{\boldsymbol{V}}_{k}^{\top} \boldsymbol{Y} = \tilde{\boldsymbol{V}}_{k}^{\top} \boldsymbol{\varepsilon}$$

• We can rewrite the p-value as:

$$\begin{split} \phi &= \frac{1}{1+K} \left(1 + \sum_{k=1}^K \mathbbm{1} \left\{ \min_{1 \leq k' \leq K} T\left(\tilde{\boldsymbol{V}}_{k'}^\top \boldsymbol{Z}, \tilde{\boldsymbol{V}}_{k'}^\top \boldsymbol{\varepsilon}\right) \leq T\left(\tilde{\boldsymbol{V}}_k^\top \boldsymbol{Z}, \tilde{\boldsymbol{V}}_k^\top \boldsymbol{P}_k \boldsymbol{\varepsilon}\right) \right\} \right) \\ &\geq \frac{1}{1+K} \left(1 + \sum_{k=1}^K \mathbbm{1} \left\{ \min_{1 \leq k' \leq K} T\left(\tilde{\boldsymbol{V}}_{k'}^\top \boldsymbol{Z}, \tilde{\boldsymbol{V}}_{k'}^\top \boldsymbol{\varepsilon}\right) \leq \min_{1 \leq k' \leq K} T\left(\tilde{\boldsymbol{V}}_{k'}^\top \boldsymbol{Z}, \tilde{\boldsymbol{V}}_{k'}^\top \boldsymbol{P}_k \boldsymbol{\varepsilon}\right) \right\} \right) \end{split}$$

• $\tilde{\boldsymbol{V}}_k$ is orthogonal to the space by $\boldsymbol{X} \& \boldsymbol{P}_k \boldsymbol{X}$ and we are under H_0 :

$$\tilde{\boldsymbol{V}}_{k}^{\top} \boldsymbol{P}_{k} \boldsymbol{Y} \stackrel{\text{under } H_{0}}{=} \tilde{\boldsymbol{V}}_{k}^{\top} \boldsymbol{P}_{k} \boldsymbol{X} \boldsymbol{\beta} + \tilde{\boldsymbol{V}}_{k}^{\top} \boldsymbol{P}_{k} \boldsymbol{\varepsilon} = \tilde{\boldsymbol{V}}_{k}^{\top} \boldsymbol{P}_{k} \boldsymbol{\varepsilon}$$

$$\tilde{\boldsymbol{V}}_{k}^{\top} \boldsymbol{Y} = \tilde{\boldsymbol{V}}_{k}^{\top} \boldsymbol{\varepsilon}$$

• We can rewrite the p-value as:

$$\begin{split} \phi &= \frac{1}{1+K} \left(1 + \sum_{k=1}^{K} \mathbb{1} \left\{ \min_{1 \leq k' \leq K} T \left(\tilde{\boldsymbol{V}}_{k'}^{\top} \boldsymbol{Z}, \tilde{\boldsymbol{V}}_{k'}^{\top} \boldsymbol{\varepsilon} \right) \leq T \left(\tilde{\boldsymbol{V}}_{k}^{\top} \boldsymbol{Z}, \tilde{\boldsymbol{V}}_{k}^{\top} \boldsymbol{P}_{k} \boldsymbol{\varepsilon} \right) \right\} \right) \\ &\geq \frac{1}{1+K} \left(1 + \sum_{k=1}^{K} \mathbb{1} \left\{ \min_{1 \leq k' \leq K} T \left(\tilde{\boldsymbol{V}}_{k'}^{\top} \boldsymbol{Z}, \tilde{\boldsymbol{V}}_{k'}^{\top} \boldsymbol{\varepsilon} \right) \leq \min_{1 \leq k' \leq K} T \left(\tilde{\boldsymbol{V}}_{k'}^{\top} \boldsymbol{Z}, \tilde{\boldsymbol{V}}_{k'}^{\top} \boldsymbol{P}_{k} \boldsymbol{\varepsilon} \right) \right\} \right) \\ &= \frac{1}{1+K} \left(1 + \sum_{k=1}^{K} \mathbb{1} \left\{ g(\boldsymbol{\varepsilon}) \leq g(\boldsymbol{P}_{k} \boldsymbol{\varepsilon}) \right\} \right) \end{split}$$

for some $g(\cdot)$ depending only on $X, Z, P := \{P_0 = I, P_1, \cdots, P_K\}.$

Remaining challenge:

Prove
$$\phi \ge \frac{1}{1+K} \left(1 + \sum_{k=1}^{K} \mathbb{1} \left\{ g(\varepsilon) \le g(P_k \varepsilon) \right\} \right)$$
 is a valid p-value (1)

However, here $g(\cdot)$ depends on \mathcal{P} .

Remaining challenge:

Prove
$$\phi \ge \frac{1}{1+K} \left(1 + \sum_{k=1}^{K} \mathbb{1} \left\{ g(\varepsilon) \le g(P_k \varepsilon) \right\} \right)$$
 is a valid p-value (1)

However, here $g(\cdot)$ depends on \mathcal{P} .

Lemma

Suppose we construct $\mathcal{P}:=\{\boldsymbol{P}_0:=\boldsymbol{I},\boldsymbol{P}_1,\ldots,\boldsymbol{P}_K\}$ s.t. it formalizes a group:

$$\forall \mathbf{P}_i, \mathbf{P}_j \in \mathcal{P}, \exists \mathbf{P}_\ell \text{ s.t. } \mathbf{P}_\ell := \mathbf{P}_i \mathbf{P}_j.$$

Then (1) is a valid p-value.

Finite-population validity of RPT

Theorem

Suppose

ullet the set of permutation matrices ${\mathcal P}$ formalizes a group;

Finite-population validity of RPT

Theorem

Suppose

- ullet the set of permutation matrices ${\cal P}$ formalizes a group;
- ε is exchangeable;

Theorem

Suppose

- ullet the set of permutation matrices ${\mathcal P}$ formalizes a group;
- ε is exchangeable;
- p < n/2;

Theorem

Suppose

- ullet the set of permutation matrices ${\cal P}$ formalizes a group;
- ε is exchangeable;
- p < n/2;

under H_0 , ϕ is a valid p-value: $\mathbb{P}(\phi \leq \alpha) \leq \alpha \ \forall \alpha \in [0, 1]$.

Theorem

Suppose

- ullet the set of permutation matrices ${\cal P}$ formalizes a group;
- ε is exchangeable;
- p < n/2;

under H_0 , ϕ is a valid p-value: $\mathbb{P}(\phi \leq \alpha) \leq \alpha \ \forall \alpha \in [0,1]$.

Remark

Theorem

Suppose

- ullet the set of permutation matrices ${\cal P}$ formalizes a group;
- ε is exchangeable;
- p < n/2;

under H_0 , ϕ is a valid p-value: $\mathbb{P}(\phi \leq \alpha) \leq \alpha \ \forall \alpha \in [0,1]$.

Remark

① Construction of $\tilde{\boldsymbol{V}}_k$ requires p < n/2;

Theorem

Suppose

- ullet the set of permutation matrices ${\cal P}$ formalizes a group;
- ε is exchangeable;
- p < n/2;

under H_0 , ϕ is a valid p-value: $\mathbb{P}(\phi \leq \alpha) \leq \alpha \ \forall \alpha \in [0,1]$.

Remark

- **1** Construction of $\tilde{\boldsymbol{V}}_k$ requires p < n/2;
- ② With prespecified α , one needs to choose $K > 1/\alpha$ to have power.

Model of Z:

$$Z = X\beta^Z + e$$
.

Model of Z:

$$Z = X\beta^Z + e$$
.

Theorem

Assume
$$\varepsilon_1, \cdots, \varepsilon_n \overset{i.i.d.}{\sim} \mathbb{P}_{\varepsilon} \& e_1, \cdots, e_n \overset{i.i.d.}{\sim} \mathbb{P}_{e}$$
 and
$$0 < \mathbb{E}[|e_1|^2] < \infty \qquad and \qquad 0 < \mathbb{E}[|\varepsilon_1|^{1+t}] < \infty$$

for $t \in [0, 1)$.

Model of Z:

$$Z = X\beta^Z + e$$
.

Theorem

Assume
$$\varepsilon_1, \cdots, \varepsilon_n \overset{i.i.d.}{\sim} \mathbb{P}_{\varepsilon} \& e_1, \cdots, e_n \overset{i.i.d.}{\sim} \mathbb{P}_{e} \text{ and}$$

$$0 < \mathbb{E}[|e_1|^2] < \infty \qquad and \qquad 0 < \mathbb{E}[|\varepsilon_1|^{1+t}] < \infty$$

for $t \in [0,1)$. Then if n > (3+m)p for const. m > 0 & $b = \Omega(n^{-t/(1+t)})$,

Model of Z:

$$Z = X\beta^Z + e$$
.

Theorem

Assume $\varepsilon_1, \cdots, \varepsilon_n \overset{i.i.d.}{\sim} \mathbb{P}_{\varepsilon} \& e_1, \cdots, e_n \overset{i.i.d.}{\sim} \mathbb{P}_{e}$ and

$$0 < \mathbb{E}[|e_1|^2] < \infty$$
 and $0 < \mathbb{E}[|\varepsilon_1|^{1+t}] < \infty$

for $t \in [0,1)$. Then if n > (3+m)p for const. m > 0 & $b = \Omega(n^{-t/(1+t)})$,

$$\lim_{n\to\infty}\mathbb{P}\left(\phi>\frac{1}{K+1}\right)=0.$$

Remarks about power analysis

 Z is a linear model w.r.t. X & all noises i.i.d. are just for simplicity of illustration;

Remarks about power analysis

 Z is a linear model w.r.t. X & all noises i.i.d. are just for simplicity of illustration;

In our paper, we proved that the same conclusion still holds when Z
is a nonlinear func. w.r.t. X & all noises are heteroschedastic.

Minimax rate optimality

• We derive that the minimax lower bound rate of separation is of order $n^{-t/(1+t)}$ for heavy-tailed distribution;

 \Rightarrow matches the **pointwise** upper bound of RPT.

Minimax rate optimality

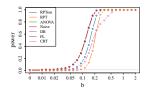
• We derive that the minimax lower bound rate of separation is of order $n^{-t/(1+t)}$ for heavy-tailed distribution;

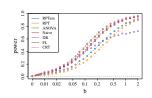
 \Rightarrow matches the **pointwise** upper bound of RPT.

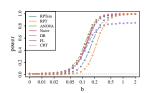
• We derive the uniform convergence rate of RPT is of $n^{-t/(1+t)+\delta}$ for any const. $\delta > 0$.

 \Rightarrow RPT nearly minimax rate optimal.

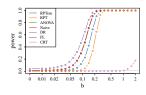
Power curves

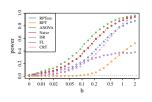


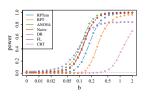




- (g) Gaussian design, Gaussian noise (h) Gaussian design, t_1 noise (i) Gaussian design, t_2 noise







- (j) t_1 design, Gaussian noise
- (k) t_1 design, t_1 noise
- (I) t_1 design, t_2 noise

Figure: n = 600, p = 100

• Theoretical power analysis: RPT attains nearly minimax optimal rate as $n \to \infty$;

• Theoretical power analysis: RPT attains nearly minimax optimal rate as $n \to \infty$;

 Finite population simulation: when n is small, empirically RPT can still be more conservative than those invalid tests, especially for heavy-tailed ε;

• Theoretical power analysis: RPT attains nearly minimax optimal rate as $n \to \infty$;

- Finite population simulation: when n is small, empirically RPT can still be more conservative than those invalid tests, especially for heavy-tailed ε;
 - \Rightarrow A cost to pay for distribution-free & finite-population validity

• Theoretical power analysis: RPT attains nearly minimax optimal rate as $n \to \infty$;

- Finite population simulation: when n is small, empirically RPT can still be more conservative than those invalid tests, especially for heavy-tailed ε;
 - \Rightarrow A cost to pay for distribution-free & finite-population validity

 Open question: how to develop a distribution-free & finite-population valid test with better empirical power in small sample size.

• Proposed RPT: distribution-free valid whenever p < n/2;

- Proposed RPT: distribution-free valid whenever p < n/2;
- Analyzed the signal detection rate of RPT and showed it is nearly minimax rate optimal;

- Proposed RPT: distribution-free valid whenever p < n/2;
- Analyzed the signal detection rate of RPT and showed it is nearly minimax rate optimal;
- Compared empirically with other state of the art approaches.

- Proposed RPT: distribution-free valid whenever p < n/2;
- Analyzed the signal detection rate of RPT and showed it is nearly minimax rate optimal;
- Compared empirically with other state of the art approaches.

For theoretical details and more simulation results, please see https://arxiv.org/abs/2211.16182