Multiple Randomization Designs

Guido Imbens – Stanford University

Based on work with Pat Bajari^{*}, Brian Burdick, James McQueen[∗] , Lorenzo Masoero[∗] , Thomas Richardson[#] and Ido Rosen^{*} $(*$ Amazon, $#$ Washington University)

London School of Economics, March 21st, 2023

Outline

- 1. Introduction
- 2. Multiple Randomization Designs
- 3. Simple Multiple Randomization Designs
	- Design
	- Estimation
	- Inference
	- Simulations
- 4. Equilibrium Designs
- 5. Clustered Double Randomization Designs
- 6. Conclusion

1. Introduction

Suppose we are thinking of offering customers more information about products. We could present them with reviews from other customers.

How do we estimate the causal effect of such a change?

Conventional experimentation: two possibilities:

Product Experiment	$W = \begin{pmatrix} products & \rightarrow & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ C & T & C & T & T & T & C \end{pmatrix}$ \n
--------------------	--

or:

Customer Experiment	W =	1	T
Randomize Customers	$W =$	2	C
3	T	4	T
5	C	7	

Conventional Analysis (going back to Fisher, Neyman): N units, $i = 1, ..., N$, randomly assigned to one of two treatments:

 $W_i \in \{C, T\}$ is treatment indicator.

Two potential outcomes, $Y_i(C)$ and $Y_i(T)$, with unit-level causal effect $\tau_i = Y_i(\top) - Y_i(C)$.

Realized/observed outcome is

$$
Y_i = Y_i(W_i) = \begin{cases} Y_i(C) & \text{if} \quad W_i = C, \\ Y_i(T) & \text{if} \quad W_i = T. \end{cases}
$$

Interest is in average causal effect:

$$
\tau = \frac{1}{N} \sum_{i=1}^{N} \left(Y_i(\top) - Y_i(\mathsf{C}) \right)
$$

Average causal effect is estimated as difference in average outcomes by treatment status.

$$
\widehat{\tau} = \overline{Y}_{\mathsf{T}} - \overline{Y}_{\mathsf{C}} = \frac{1}{N_{\mathsf{T}}} \sum_{i: W_i = \mathsf{T}} Y_i - \frac{1}{N_{\mathsf{C}}} \sum_{i: W_i = \mathsf{C}} Y_i
$$

Estimated (conservative) variance:

$$
\widehat{\mathbb{V}} = \frac{S_{\mathsf{T}}^2}{N_{\mathsf{T}}} + \frac{S_{\mathsf{C}}^2}{N_{\mathsf{C}}}
$$

where

$$
S_C^2 = \frac{1}{N_C - 1} \sum_{i: W_i = C} (Y_i - \overline{Y}_C)^2, \quad S_T^2 = \frac{1}{N_T - 1} \sum_{i: W_i = T} (Y_i - \overline{Y}_T)^2
$$

What is the problem with conventional A/B testing in market place settings?

Main problem is units interact in complex, intentional ways, leading interference / spillovers at some level.

- Treating customer i may have an effect on outcome for control $\frac{1}{2}$ customer i' .
- Treating product j may have an effect on outcome for control product j' .

 A/B experiments (i) ignore this, (ii) do not not allow us to detect the problem, *(iii)* do not allow us to address the resulting bias.

Spillovers/Interactions are intrinsic to market places: Market

places bring together different parties.

Recent Literature on "Complex" Experiments

- Munro, Evan, Stefan Wager, and Kuang Xu. "Treatment effects in market equilibrium." arXiv preprint arXiv:2109.11647 (2021).
- Papadogeorgou, Georgia, Fabrizia Mealli, and Corwin M. Zigler. "Causal inference with interfering units for cluster and population level treatment allocation programs." Biometrics 75, no. 3 (2019): 778-787.
- Zigler, Corwin M., and Georgia Papadogeorgou. "Bipartite causal inference with interference." Statistical science: a review journal of the Institute of Mathematical Statistics 36, no. 1 (2021): 109.
- Johari, Ramesh, Hannah Li, Inessa Liskovich, and Gabriel Y. Weintraub. "Experimental design in two-sided platforms: An analysis of bias." Management Science (2022).

Main Idea of current paper:

Can think of (binary) treatment assignment as **matrix** instead of vector

 $\mathbf{W} =$ $\sqrt{2}$ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜ ⎝ $products \rightarrow 1$ 2 3 4 5 6 7 8 customers ↓ 1 ? ? ? ? ? ? ? ? 2 ? ? ? ? ? ? ? ? 3 ? ? ? ? ? ? ? ? 4 ? ? ? ? ? ? ? ? 5 ? ? ? ? ? ? ? ? \setminus ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟ \overline{I}

In this set up, standard experiments are special case:

Customer Experiment Randomize Customers ^W ⁼ ⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜ ⎝ products → 1 2 3 4 5 6 7 8 customers ↓ 1 C C C C C C C C 2 C C C C C C C C 3 T T T T T T T T 4 C C C C C C C C 5 T T T T T T T T ⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟ ⎠ or Product Experiment Randomize Products ^W ⁼ ⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜ ⎝ products → 1 2 3 4 5 6 7 8 customers ↓ 1 C T C C T T T C 2 C T C C T T T C 3 C T C C T T T C 4 C T C C T T T C 5 C T C C T T T C ⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟ ⎠

8

But we can do more interesting things than customer or product experiments:

Simple Multiple Randomization Design

	$\left(\begin{array}{ccc} products & \rightarrow & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\\ customers & & & & & & \end{array}\right)$					
				CCCCCCC		
				CCCCCCC		
	$\overline{3}$			CCCCTTTT		
				CCCCTTTT		
						C C C C T T T T J

Three control groups that are ex ante comparable, but ex post possibly different: C, C, C

2. Multiple Randomization Designs

General: Two or more populations, with outcomes indexed by both (customers/products, drivers/riders, products/days, drivers/riders/days).

Could choose to randomize units from one of the two populations and use conventional A/B experiments.

But: Could assign treatment to pair customer/product.

Three benefits:

- **Benefit 1:** Multiple randomization designs can be more powerful in estimating average treatment effects
- **Benefit 2:** Multiple randomization designs can detect presence of spillovers.
- **Benefit 3:** Multiple randomization designs can adjust for richer patterns of spillovers.

Generic Double Randomization Example:

Population 1: Customers

Population 2: Products

Treatment: provide more information about product to customer (e.g., pictures instead of written description, or ratings of previous customers) or shipping discount.

Decision: should we implement the treatment for all customers and products or for no one?

Statistical Question to Inform Decision: By how much would exposing all customers/products to the treatment improve average customer satisfaction/purchases?

Key: In experiment we can vary the treatment and measure the outcome at the level of the customer/product pair (not possible in many traditional settings, and even here sometimes fraught with issues)

Simple Multiple Randomization Design

Questions:

- 1. (Estimand) What are we interested in?
- 2. (Design) How do we choose distribution $p(\mathbf{w})$?
- 3. (Estimation) How do we estimate things?
- 4. (inference) How we do inference?

Potential outcomes

Bipartite graph representation $(I = 3, J = 2)$ of a simple double randomization design. Viewers $i \in \{1, ..., I\}$ have treatment indicators $W_i^{\overline{V}}$ $\overline{c}_i^V \in \{0,1\}$. Content creators $j \in \{1, ..., J\}$ have treatment indicators W_j^C $j \in \{0, 1\}.$ Treatment assignment for each (viewer, creator) pair (i,j) is W_{ij} = $W_i^{\vec{V}} W_j^{\vec{C}}$ $j^{\mathbf{C}}$ so that it is treated iff both treatment indicators are 1. Potential outcome for pair (i, j) is $Y_{ii}^{(W)}$ $Y_{ij}^{(W)}\,=\,Y_{ij}(S_{ij}^{\texttt{dbr}})\,=\,Y_{ij}(\texttt{type}(W_i^V))$ $\{V_i^V, W_j^C\}$), where 'type' is given by equation ??.

Double Randomization Design

- I Customers, $i = 1, \ldots, I$.
- J Products, $j = 1, \ldots, J$

Outcomes and treatments are measured for pair customer/product:

- Y_{ij} is outcome for customer i and product j
- $W_{ij} \in \{C, T\}$ is binary treatment for customer i and product j (information / no information)

Y and W are *Ix.I* matrices of outcomes and treatments.

General Question:

Design of Experiment, what is good/optimal choice of distribution $p(\mathbf{w})$.

In standard experimental setting often the optimal design is simple: randomly select half the population and assign those to treatment and the others to control.

Here: What should the correlation be within rows and columns of treatment matrix W?

Depends on (i) question of interest (ii) assumptions about potential spillovers and correlation of outcomes: Not assumption-free

Completely Randomized Design

(attractive in absence of spillovers, and in that case easy efficiency gain over customer or product experiment)

 $\mathbf{W} =$ $\sqrt{2}$ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜ ⎝ $products \rightarrow 1$ 2 3 4 5 6 7 8 customers ↓ 1 C T C T T T C C 2 C C T T C T C T 3 T T T C C C T C 4 T C C C T C T T \setminus ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟ $\overline{ }$

- More efficient than Customer or Product experiment.
- Optimal to balance treatment for Customers and Products.
- Estimate average treatment effect as $\hat{\tau} = \overline{Y}_{T} \overline{Y}_{C}$

Suppose

$$
Y_{ij}(C) = \mu + \alpha_i + \beta_j + \varepsilon_{ij}, \qquad Y_{ij}(T) = Y_{ij}(C) + \tau,
$$

\n
$$
E[\alpha_i] = 0, \qquad V(\alpha_i) = \sigma_\alpha^2, \qquad E[\beta_j] = 0, \qquad V(\beta_j) = \sigma_\beta^2,
$$

\n
$$
E[\varepsilon_{ij}] = 0, \quad V(\varepsilon_{ij}) = \sigma_\varepsilon^2, \quad \alpha_i, \beta_j, \varepsilon_{ij} \text{ independent.}
$$

$$
V(\hat{\tau}|\text{customer} - \text{experiment}) = 4\frac{\sigma_{\alpha}^2}{I} + 4\frac{\sigma_{\varepsilon}^2}{IJ}
$$

$$
V(\hat{\tau}|\text{product} - \text{experiment}) = 4\frac{\sigma_{\beta}^2}{J} + 4\frac{\sigma_{\varepsilon}^2}{IJ}
$$

$$
V(\hat{\tau}|\text{completely} - \text{randomized}) = 4\frac{\sigma_{\varepsilon}^2}{IJ} \text{ much smaller!}
$$

Cross-over Experiment

(familiar from old agricultural experimental design literature)

$$
W = \begin{pmatrix} \text{time} & - & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \text{customers} \\ 1 & & C & T & T & T & C & T \\ 2 & & C & T & T & C & T & T \\ 3 & & T & T & C & C & T & C \\ 4 & & T & C & C & T & T & T \end{pmatrix}
$$

⋄ More efficient than Customer or Time experiment.

⋄ Optimal to balance treatment for Customers and Time Periods.

3. Simple Double Randomization Designs (more complex) Randomize customers into N^{C} ≥ 2 groups with indicator W_i^{C} i Randomize products into $N^P \geq 2$ groups with indicator W_i^P j Assignment is W_{ij} = $f\left(W_i^\mathsf{C}\right)$ $\binom{\mathsf{C}}{i}, W_j^{\mathsf{P}}$ For example $N^C = N^P = 2$: $\mathbf{W} = f\left(\mathbf{W}^{\mathsf{C}}, \mathbf{W}^{\mathsf{P}}\right) =$ $\sqrt{2}$ ⎜⎜⎜⎜⎜ ⎝ C C C C C C C C C C C C C C C T T T C C C T T T \setminus ⎟⎟⎟⎟⎟ \overline{I} .

• Creates $N^{\mathsf{C}} \times N^{\mathsf{P}}$ (= 4 here) ex ante comparable groups that have systematically different experiences ex post.

Four groups of pairs, T , C , C , and C .

Analyzing a Simple Double Randomization Design

The pair (W_i^{C} $\mathcal{L}_i^{\mathsf{C}},W_j^{\mathsf{P}})$ defines four types of customer/product pairs:

 T_{ij} = $\sqrt{ }$ ⎪⎪⎪⎪⎪⎪⎪⎪ ⎨ ⎪⎪⎪⎪⎪⎪⎪⎪ \lfloor **cc** (consistent control) if W_i^{C} $i_i^{\text{C}} = 0, W_j^{\text{P}} = 0,$ ic (inconsistent customer control) if W_i^C $i_i^{\text{C}} = 1, W_j^{\text{P}} = 0,$ ia (inconsistent product control) if W_i^{C} $i_i^{\text{C}} = 0, W_j^{\text{P}} = 1,$ tr (treated) if W_i^{C} $i^{\text{C}} = 1, W_j^{\text{P}} = 1.$

The assignment and type matrices for a simple double randomization design are

$$
W = \begin{pmatrix} C & C & C & C & C \\ C & C & C & C & C \\ C & C & C & T & T \\ C & C & C & T & T & T \end{pmatrix}
$$

$$
T = \begin{pmatrix} cc & cc & cc & ia & ia & ia & ia \\ cc & cc & cc & ca & ia & ia & ia \\ ic & ic & ic & tr & tr & tr & tr \\ ic & ic & ic & ic & tr & tr & tr & tr \end{pmatrix}
$$

Possible Comparisons:

- 1. Treated versus all controls: $\overline{Y}_{T} \overline{Y}_{C}$
- 2. Treated versus consistent controls: $\overline{Y}_{T}-\overline{Y}_{C}$ (informative about total effect of intervention)
- 3. Inconsistent Products versus Consistent Controls: $Y_C - Y_C$ (informative about spillovers within products)
- 4. Inconsistent customers versus Consistent Controls: \overline{Y}_{C} – \overline{Y}_{C} (informative about spillovers within customers)
- 5. Difference In Differences Comparison: $\overline{Y}_{\text{T}} - \overline{Y}_{\text{C}} - (\overline{Y}_{\text{C}} - \overline{Y}_{\text{C}})$ (direct effect of treatment)

Local Interference

Potential outcomes satisfy the local interference assumption if, for any pair (i, j) , and \mathbf{w}, \mathbf{w} ′ , such that (a) the assignments for the pair (i, j) coincide, w_{ij} = w ′ ı
ij ' (b) the fraction of treated s for the same coincide, \overline{w} P $i = \overline{w}$ ′C \int_{i}^{∞} , and (c) the fraction of treated s for the same coincide, $\overline{w}^{\mathsf{C}}_i$ $\frac{\zeta}{j} = \overline{w}$,
∕P $\int\limits_{j}^{\prime}$, ′

 $y_{ij}(\mathbf{w}) = y_{ij}(\mathbf{w})$). Inference

$$
\alpha_{\omega}^C \coloneqq \frac{1}{I-1} \frac{I-I_{\omega}}{I_{\omega}} \quad \text{and} \quad \alpha_{\omega}^P \coloneqq \frac{1}{J-1} \frac{J-J_{\omega}}{J_{\omega}},
$$

Let

$$
\begin{aligned} \widehat{\Sigma}_\omega &:= \frac{I_\omega^{-1} \alpha_\omega^C \omega C + J_\omega^{-1} \alpha_\omega^P \omega \mathsf{P} + \left(I_\omega J_\omega\right)^{-1} \alpha_\omega^C \alpha_\omega^P \omega \mathsf{C} \mathsf{P}}{1 - \alpha_\omega^C - \alpha_\omega^P + \alpha_\omega^C \alpha_\omega^P} - \\ &\left[\sum_{i \in \mathcal{I}, j \in \mathcal{I}} \frac{\left(y_{i,j}(\omega) - i \mathsf{C}(\omega)\right)^2}{\frac{\left(1 - \alpha_\omega^C\right)\left(J_\omega - 1\right)}{\alpha_\omega^C} + \frac{\left(y_{i,j}(\omega) - i \mathsf{P}(\omega)\right)^2}{\alpha_\omega^P}\right]. \end{aligned}
$$

Consider a SMRD, with $I \times J$ total units, $I > I_T \geq 2, J > J_T \geq 2$, and for which local interference holds. For all $\omega \in \{c, im, iv, t\}$,

$$
\mathbb{E}\left[\hat{\Sigma}_{\omega}\right] = \mathbb{V}\left(\hat{\overline{Y}}_{\omega}\right).
$$

More complex Multiple Randomization Design:

Questions:

What are we interested in? How do we choose assignment distribution $p(\mathbf{w})$? How do we estimate things? How we do inference?

 \setminus

⎟⎟

 \overline{I}

Multiple Randomization for Clustering Problems: We could combine a cluster-randomized product experiments for one sets of customers with an product experiment for a second set of customers.

Suppose the treatment is a shipping discount, and as a result of the treatment customers switch their purchases from control products to treated products within the same cluster.

Customers assigned to group A are part of a cluster randomized experiment, customers assigned to group B are assigned to completely randomized experiment.

• This design is be informative re within-cluster spillovers by creating multiple ex ante comparable control groups.

4. Conclusion

• In settings with multiple populations more complex experimental designs are possible.

- Such designs (e.g. multiple randomization designs) can answer more questions about interference/spillovers than conventional designs by creating multiple comparison groups.
- Opens up lots of design questions.
- Opens up lots of inference questions.
- Important role for (economic/substantive) modeling (limits on) spillovers.