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The Basic Model

• Existence and Uniqueness of MLE:
Under what specific conditions the
maximum likelihood parameter estimate
exists and is unique, or exists but may
not be unique?

• Accuracy and its relation to inputs:
In terms of the mean squared error of
MLE, does this accuracy depends on key
properties of the input data? If true, is it
possible to accelerate learning by
manipulating the input data?

• Inference questions beyond MSE:
How can we test if some items are
significantly better than others? If so,
how can we identify the best or a set of
best items with a minimum sampling
complexity?

Open Research Questions and Initial findings

MLE uniquely exists if and only if the following conditions are satisfied:
• The design matrix formed by input data points is of full rank
• The input data points overlap, or equivalently, the scaled degree vector lies in the polytope of

degree sequences

We also bridged the gap between uniqueness and existence conditions.

A key property for bounding the mean squared error of MLE is the smallest eigenvalue of the 
Gram matrix of the design matrix. This eigenvalue is strictly positive if and only if a certain 
graph-theoretic measure of non-bipartiteness is strictly positive.
• Under the setting of random design, we can accelerate learning by adjusting group size
• The optimal design problem is equivalent to an ellipsoid inclusion problem solvable using semi-

definite programing

The estimation problem has been studied extensively for related models.
• For pairwise beta models, asymptotically power hypothesis tests have been proposed.
• For beta model with singletons, a median elimination approach is optimal for finding the best item.
• For group testing, a near-optimal information theoretic approach is used to localize significant items.
• For comparison models, the scoring procedure is optimal to rank the item sets with respect to

minimizing an expected risk.

Challenges

Given ß = (ß1, …, ß𝑛), the generalized beta model constructs a random 
hypergraph by putting a hyperedge independently for a group of 
nodes 𝑆 with probability:

𝑝(𝑦𝑆 = 1) =
1

1 + 𝑒−  𝑖⋴𝑆 ß𝑖

It can be interpreted as modelling group success as a single 
dimensional “OR” of node parameter values.

The model has connections with:
• Beta model for random graphs: a special case of the generalized beta

model when the cardinality for every group S is 2
• Group testing problem: a noisy version of group testing where each

individual is according to a double-exponential distribution.

Key Questions

 Relationships might be explained by features in multiple dimensions
 Intricate interactions might exist between entities and features

Many relational data can be expressed using hypergraphs:
• Nodes represent items or individuals.
• Hyperedges (subsets of nodes) represent entities grouped by

relationships

The challenge is to learn individual representations that 
explain observed data at a hyperedge level.

Online labor platform    Recommender system     Knowledge graph

Motivations
Relational data is widely used in our lives.

General models

Main results

• Use vector ß𝑖 to represent latent features of ith entity
• Use vector γ𝑗 to represent task requirements for jth relation

A natural extension: 

𝑝 𝑦𝑆 = 1 =
1

1 + exp(−γ𝑗
𝑇  𝑖⋴𝑆 ß𝑖)

It can be interpreted as modelling group success as a multi-
dimensional “OR” of latent feature values. 

• Feature correlations can be captured using a correlation matrix Θ
• Individual interactions can be characterized by a feature vector ß𝑆
A general model: 

𝑝 𝑦𝑆 = 1 = σ γ𝑗
𝑇Θß𝑆 where   ß𝑆 = 𝑓(ß𝑖 , 𝑖 ∈ 𝑆)

where σ denotes the logistic function and 𝑓 is any vector-valued 
function acts component-wisely on individual features.

An example of online labor platform
• each user has a particular skillset
• each project requires a particular combination of skills
• skills might be correlated




