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Insurance

Cramér—Lundberg Process

Ny
Xt =x+ct— Z Y;
Jj=1
where x,c > 0, N; is a Poisson process with intensity A > 0 and

{Yj}j>1 is a sequence of positive i.i.d random variables
independent of N;.

Two quantities of interest are the moment of ruin and the last zero
of the process

1, = inf{t >0: X, <0}
g =sup{t>0:X; <0}
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Degradation models

We can model the ageing of a device with D = (D;, t > 0) where

Dt: Gt+UBt

where 0 > 0, (G, t > 0) is a subordinator and (B, t > 0) is an
standard Brownian motion. Then, D is an spectrally positive Lévy
process.

The failure time of the device can be defined as

g =sup{t>0:X;>*f}

where £, is a critical value.
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Last passage times

For example, if

Last passage times are random times which are not stopping times.

g =sup{t>0:X; <0}
then we have that

{g<t}={Xs>0foralls>t}eF.
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then we have that

{g<t}={Xs>0foralls>t}eF.

Stopping times are random times such that the decision whether to
stop or not depends only on the past and present information.
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Last passage times

Last passage times are random times which are not stopping times.
For example, if

g =sup{t>0:X, <0}

then we have that

{g<t}={Xs>0foralls>t}eF.

Stopping times are random times such that the decision whether to
stop or not depends only on the past and present information. We
are interested in

gr =sup{s <t:Xs <0}



Last Zero

I—Introdut:tion

Brownian motion: Azéma martingale

In Brownian case 6; last hitting time of zero before time t many
results are known, many linked to Azéma’'s martingale

sgn(Bt)g\/ t — 0.
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Brownian motion: Azéma martingale

In Brownian case 6; last hitting time of zero before time t many
results are known, many linked to Azéma’'s martingale

sgn(Bt)g\/ t — 0.

Azéma 1985 Sur les fermés aléatoires.

Azéma-Yor 1989 Etude d'une martingale remarquable

Cetin, U. 2012 Filtered Azéma martingales.

Dassios, A., Lim J. 2018 A variation of the Azéma martingale and
drawdown options
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Lévy processes
A process X = (X, t > 0) is said to be a Lévy process if
> The paths of X are P-a.s. cadlag
» X has independent increments

> X has stationary increments
> Xy =0as.
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Lévy processes
A process X = (Xi, t > 0) is said to be a Lévy process if
> The paths of X are P-a.s. cadlag
> X has independent increments
> X has stationary increments
> Xy =0as.
Basically: Brownian motion with jumps.
Examples
» Brownian motion
» Compound Poisson process
» Gamma process
The law of a Lévy process is characterised by the characteristic
exponent,

V(0) = —log (E(eiexl)) .
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Lévy—Khintchine Formula for Lévy processes

Exist 0 > 0, 1 € R and measure [1 (Lévy measure) concentrated
on R\ {0}, with [(1 A x?)[(dx) < oo, such that

1 .
W(6) = ipb + 50202 + /R(l — & + XTIy <13)M(dx)

for all 8 € R.

Lévy—It6 decomposition

t
Xt:O'Bt—'LLt-i‘/ / XN(dS,dX)
{IxI=1}

//{|x|<1} N(ds, dx) — ds(dx))
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Some more motivation

In Leland 1994 and Manso et al. 2010 equity holders endogenously
choose the time of bankruptcy of a firm.
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Some more motivation

In Leland 1994 and Manso et al. 2010 equity holders endogenously
choose the time of bankruptcy of a firm.

Firm's performance measure X. Time of the bankruptcy is
determined by the optimal stopping problem

sup s ([ e t50%) - ctx ] )

TET
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e

Here c is the coupon rate paid debt holders, and § is the payout
rate received by the firm.
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determined by the optimal stopping problem

e

Here c is the coupon rate paid debt holders, and § is the payout
rate received by the firm. Performance X, current positive
excursion above the level k, given by

Vt(k) =t—sup{0 <s <t:Xs >k}, also provides information
about the performance of the firm.
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Some more motivation

In Leland 1994 and Manso et al. 2010 equity holders endogenously
choose the time of bankruptcy of a firm.

Firm's performance measure X. Time of the bankruptcy is
determined by the optimal stopping problem

e

Here c is the coupon rate paid debt holders, and § is the payout
rate received by the firm. Performance X, current positive
excursion above the level k, given by

Vt(k) =t—sup{0 <s <t:Xs >k}, also provides information
about the performance of the firm.

Default time can be generalised to (V, X) as its performance
measure, where X can be taken to be an exponential Lévy process.
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In 2024 AAP with José Pedraza: Optimal prediction, p > 1

inf E[|7 — g|?]
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We needed and an Ito formula/infinitesimal generator of (g, X:).
Paper exploded in size

This talk based on preprint, ironing out final issues this evening,
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A spectrally negative Lévy process is a Lévy processes with only
negative jumps (0, 00) = 0 and not monotone paths.

In this case the Laplace exponent defined as

¥(2) = log (E(e))

always exists and we have that ¢//(0+) = E(X1). We also define
the right-inverse of 1 by

®(q) =sup{\ > 0:¢(\) =q}
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Scale functions

For g > 0, W(9) is a continuous and strictly increasing function in
(0, 00) such that W(9(x) = 0 for x < 0 and its Laplace transform
is given

Oo—x 9D (x)d
/O BX W) (x) dx w(m 5 > &(q),

where ®(q) is the right inverse function of ¢. We also define the
the function Z(9) as

ZW(x)=1+q / W9 (y)dy.
0
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Last zero and exercursions
Let X be a spectrally negative Lévy process drifting to infinity. Let
t > 0 and x € R, we define as gt(x) as the last time that the
process is below x before time t, i.e.,
gt(x) =sup{0 <s<t:X; <x},
with the convention sup® = 0. We simply denote g; := gt(o) for all
t > 0. We define
Up =t —gt

the time of the current excursion before time t above zero.
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Figure: Sample path of X on the left hand side. Sample path of U; on
the right hand side.
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Strong Markov process

» Process (g, t, X¢) is strong Markov
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Strong Markov process

» Process (g:, t, Xt) is strong Markov
> State space Eg given by

{(7,t,x): 0 <~y < tand x> 0}U{(y,t,x): 0 <~y =t,x <0}

P For nice functions h and stopping time 7 conditional expectation
E(h(grrs, T + 5, Xris) | Fr) = fo(gr, 7, X7),
where for any (v, t, x) € Eg,
fo(v, t,x) = Ex(h(v, t + 5, X)L - y)

+E (h(gs + t, t+s, XS)H{o;gs})- where
o, =inf{t >0:X; <0}.
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Theorem

OF,
Flgt, t, Xt) = Fg0,0, Xo) + J§ HE

For nice enough F we have the It6 formula for (g, t, X)

t
+J3 G (ge— s s, Xs—)dXs + 30?

(s, Xs— )H{gs—:s}ds_'—fot %t 8&s ’S’XS*)H{gs— <syds
otig(gs,s Xs)ds
0.1 (= 00.0) [FlEs:5: X,— +) = Flas— 5, Xs—) = y 3 (8 5. Xs2)| N(ds x dy)

N
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Theorem
For nice enough F we have the It6 formula for (g, t, X)

Flge, t, Xt) = F(go,0, Xo) + Jg o SE(s, Xs Vg, —syds+ J§ S (gs 5, Xs (g, <syds
HfE OE (g 5, X )dXs + S0 [ 22 F (505, Xs)ds
+Ji0. J—o0.0) [F(gs,s,xr +y) e ) = ¥ GE (o 5. X )] N(ds x dy)
=Fg0,0,X0) + Jf Z4E (5. Xe Vg, —opds+ i OF (gom 5. X ) (5, <5yds
+J§ G (ge— s s, X )dXs + 10° J%E(gs,,s,xs,)ds
+f[01t] f(—oo,o) [F(s,s,XS, +y)— F(s,s,Xs—) — y%(s s, Xs— )] L{g,_ =53} N(ds x dy)
+Ji0,4 Ji—co,0) [FlEs—s 5 Xem +¥) = Flgs— 5, Xs—) = y B (o 5, X))
XH{X5_+y>0}H{gs_ <s} N(ds x dy)
+ S0, S oo,0) [Fls:8: Xem +¥) = Fles— 5, X—) = y B (o5, X))
XH{X5_+y§0}]I{gs_ <s} N(ds x dy),

where Fg(t, x) := F(t, t,x) fort > 0 and x < 0.
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And now what?

Using 1t6 formula we can deduce, among others

» The infinitesimal generator of (g, t, X¢).
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in terms of scale functions of X.
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And now what?
Using It6 formula we can deduce, among others
» The infinitesimal generator of (g, t, X;).
» For nice enough functions, compute

E (/Ooo e‘qu(Ur,Xr)dr>

in terms of scale functions of X.
» Joint Laplace transform (Ue,, Xe,) -

» Solve optimal stopping problems related to corporate
bankruptcy

» Resolve various aspects needed to solve

inf E[|T — g|P].



Last Zero

- Ingredients of proofs

Ingredients of the proofs

» Perturbed Lévy process. Revuz Yor (1999), Dassios Wu
(2011).

Lewprocess  PerumbedL vy process

)‘W/Wvﬂ A Pl A

vv ¥ \/YM J

‘‘‘‘‘‘‘‘‘‘‘‘

=

Figure: Left: Sample path of X. Right: Sample path of the
perturbed process

» Use appropriate version of known It6 formula (e.g.
Peskir's),properties of g, limiting arguments and local time.
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Thank you

=] 5 = = E DA
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