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Introduction

We consider a nonzero-sum stochastic game between two players, Player 1 and Player 2
where Player 1 uses impulse controls while Player 2 can stop the game any time he wants.
Both want to maximize given objective functionals. Mathematically speaking we are given:
• a filtered probability space (Ω,F,P) equipped with (Ft)t≥0, the filtration generated by the

standard Brownian motion (Wt)t≥0;

• an uncontrolled state variable X ≡ Xx whose dynamics is

dXt = b(Xt)dt + σ(Xt)dWt, X0 = x, (1)

where the coefficients satisfy all is needed to grant existence of a unique strong solution
(e.g. Lipschitz continuity).
• Player 1 can affect X’s dynamics with impulse controls u = (τn, δn)n≥1 where τn is an

increasing sequence of stopping times such that τn ↑ ∞ as n ↑ ∞, while δn is the size
of the corresponding impulse, i.e. δn ∈ L0(Fτn). Any impulse δn brings the state variable
from Xτn− to its new value Xτn = Xτ−n + δn. The controlled state variable will be denoted
by Xx,u. Moreover, every time Player 1 intervenes he faces a cost, say φ(Xτn−, δn), which
may depend on the state variable before the intervention as well as on the impulse.
• Player 2 can stop the game by choosing any stopping time η with values in [0,∞]. Player

2 can get something, say ψ(Xτn−, δn), any time Player 1 intervenes.
•Both players wants to maximize their respective objectives, which are given by

J1(x;u, η) = E

∫ η

0

e−r1tf (Xx,u
t )dt−

∑
n:τn≤η

e−r1τnφ(Xτn−, δn) + e−r1σh(Xη)1(η<∞)

 (2)

J2(x;u, η) = E

∫ η

0

e−r2tg(Xx,u
t )dt +

∑
n:τn≤η

e−r2τnψ(Xτn−, δn) + e−r2σk(Xη)1(η<∞)

 (3)

Game Setting

First, we need to introduce players’ strategies, defined as follows:
• Player 1’s strategy is u = (τn, δn)n≥1, where (τn)n≥1 is a sequence of stopping times such

that 0 = τ0 < τ1 < τ2 < . . . < τn ↑ ∞ and δn ∈ L0(Fτ−n ) with δn : Rd→ Z, Z ⊆ Rd.

• Player 2’s strategy is a stopping time η ∈ T , η : Ω→ [0,∞].
Hence, the controlled process is:

Xx;u
t := x +

∫ t

0

b(Xx;u
s )ds +

∫ t

0

σ(Xx;u
s )dWs +

∑
n:τn≤t

δn

We denote by Ax the set of the x-admissible pairs.
Nash Equilibrium: Given x ∈ Rd, we say that (u, η) ∈ Ax is a Nash equilibrium of the
game if

J1(x;u∗, η∗) ≥ J1(x;u, η∗) ∀ u s.t. (u, η∗) ∈ Ax
J2(y;u∗, η∗) ≥ J2(x;u∗, η) ∀ η s.t. (u∗, η) ∈ Ax

Finally, the equilibrium payoffs of the game are defined as follows: if x ∈ Rd and a Nash
equilibrium (u∗, η∗) ∈ Ax exists, we set for i ∈ {1, 2}

Vi(x) := Ji(x;u∗, η∗)

The Quasi-Variational Inequalities System

The differential problem that should be satisfied by the equilibrium payoff functions of our
game is as follows:
Assume that V1 and V2 are defined for each x ∈ Rd and that there exists at least a function δ
from Rd to Z such that:

{δ(x)} = argmaxδ∈Z{V1(x + δ)− φ(x, δ)} (4)

for each x ∈ Rd. We define the following two intervention operators:

MV1(x) = V1(x + δ(x))− φ(x, δ(x)) (5)
HV2(x) = V2(x + δ(x)) + ψ(x, δ(x)) (6)

for each x ∈ Rd. Moreover, we assume V1, V2 ∈ C2(Rd) and define

AV = bVx +
1

2
σ2Vxx

We are interested in the following quasi-variational inequalities for V1, V2:

MV1 − V1 ≤ 0 everywhere (7)
V2 − k ≥ 0 everywhere (8)
HV2 − V2 = 0 in {MV1 − V1 = 0} (9)
V1 = h in {V2 = k} (10)
max{AV1 − r1V1 + f,MV1 − V1} = 0 in {V2 > k} (11)
max{AV2 − r2V2 + g, k − V2} = 0 in {MV1 − V1 < 0} (12)

The intuition behind these conditions is as follows:

• (7): means that is not always optimal to intervene and is a standard condition in impulse
control theory [4], [5];

• (8): if Player 2 plays η = 0 he gains k(x), since this is a suboptimal strategy we have
V2 ≥ k ∀x ∈ Rd;

• (9): by definition of Nash equilibrium we expect that Player 2 does not lose anything
when Player 1 intervenes [1];

• (11): before Player 2 stops Player 1 plays a classic one-player impulse game;

• (12): when Player 1 does not intervene Player 2 solves his own optimal stopping problem.

The Verification theorem

Theorem : Let V1, V2 be functions from Rd to R. Assume that (4) holds and set C1 :=
{MV1 − V1 < 0} and C2 := {V2 − k > 0} withMV1 as in (5). Moreover, assume that:

•V1 and V2 are solutions of the system of QVIs;

•V1 ∈ C2(C2 \ ∂C1) ∩ C1(C2) ∩ C(Rd), V2 ∈ C2(C1 \ ∂C2) ∩ C1(C1) ∩ C(Rd), and both of
them have polynomial growth;

• ∂Ci is a Lipshitz surface1, and Vi’s second order derivatives are locally bounded near ∂Ci.
Finally, let x ∈ Rd and assume that (u∗, η∗) ∈ Ax, with u∗ = (τn, δn)n≥1 such that
τn = inf{t > τn−1;Xt ∈ ∂C1} and {δn} = argmaxδ∈Z{V1(Xτ−n + δ)− φ(Xτ−n , δ)}, and
η∗ = inf{t ≥ 0 : V2(Xt) = k(Xt)}.
Then, (u∗, η∗) is a Nash Equilibrium and Vi = Ji(x;u∗, η∗) for i ∈ {1, 2}.

Remark: We have proved an alternative version of the above theorem providing an anal-
ogous result. The difference relies in changing the assumptions in order to use Corollary 4
in [7] instead of using the approximation arguments in [8] to be able to apply Itô’s Formula
during the proof.

Work in Progress

We are currently

• studying some examples in which Player 1, the controller, either induce Player 2, the
stopper, to stop or he does not;

•Looking for economically/financially relevant examples. In particular, it might be inter-
esting the case in which both the controller and the stopper are looking for high (or low)
values of the underlying process. This situation might resemble a manager (controller) vs
investor (stopper) kind of interaction, with the manager controlling the production in an
attempt to maximize firm’s profits while the investor can decide to shut it down, stopping
the game, in case its outcome is not satisfactory.

Forthcoming Research

Going beyond the verification theorem, which requires too much regularity, we want to
solve the game in a viscosity setting. In particular, we believe that, thanks to viscosity solu-
tion [6, 2] and stochastic Perron’s method [3], the use of numerical methods directly on the
system of quasi-variational inequalities should be possible.

References
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1I.e. it is locally the graph of a Lipschitz function.


