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This is the second batch of the pre-arrival modules designed to prepare you for the 

courses in your core curriculum. Modules 5 through 7 follow up and delve deeper into 

some of the themes covered in the previous batch. All three of these new modules will 

prepare you to understand academic studies that supply the evidence for ‘evidence-based 

policymaking’. 

 

As you make your way through these modules, you may encounter difficult concepts you 

won’t understand, at least not at first. This is to be expected and is nothing to worry about. 

Most of the information in these pre-arrival modules will be reviewed i again when you 

start taking your core courses. 

 

You should study these modules at your own pace, taking care to understand the various 

concepts you encounter. Feel free to review the modules you need and skip the others. 

Key concepts or terms are put in italics. Practice problems can be found at the end of 

each module which you can check using the answer key provided in a third pdf. 
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Module 5: Statistical Inference & Central Limit Theorem 
 

Statistical inference is a procedure, in which we use what we know about the data from a sample 

to infer what is likely to be true about the whole population. This process of statistical inference 

involves some degree of uncertainty because we try to learn about the population using only a 

sample of data from that population. For instance, we might be interested in the average age of 

students in higher education institutions in the UK. Currently there are 2.34 million of them. But 

we may only have access to the age data of a small subset (sample) of these students, for 

instance, 1,500 of them. Then, we would need to make an inference about the average age of all 

students in higher education in UK using the age data of the students in our sample. Or, we might 

be interested in the level of support for Brexit in UK amongst all British voters, which is close to 

46 million. We may have access to the data on the views of only a subset of these voters. Then 

we would infer the level of support for Brexit in the entire British electorate using the views of only 

a subset of these voters. 

 
Figure 1: Population vs. Sample  
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As the Figure 1 illustrates, we are interested in learning about a population. Most of the time, this 

is the mean value of some variable, called µ . If we have access to data from a sample of this 

population that is randomly selected,1 then, using the sample mean, called X̅, , we can make an 

inference about the population mean, µ 

 
 

Since we try to learn about a population using only a subset of data from that population, the 

process of statistical inference necessarily involves some uncertainty. But we also know how to 

measure this uncertainty thanks to the a very important tool of inference called ‘The Central Limit 

Theorem’. Here is an example to understand this very important theorem. 

 

 

5.1 An Example: Flipping Coins 
 
 
Let’s think about the following experiment: Suppose we have a fair coin, and we flip it 10 times. 

Every time it comes up heads, we code it as 1. Every time it comes up tails, we code it as 0. After 

10 flips, we calculate the average of these 0’s and 1’s. This average will be a number between 0 

and 1. If its a fair coin, we should expect it to come up heads 5 times and tails 5 times so the 

average would be .5. But this is not necessarily the case in any set of 10 flips. Purely by chance, 

it may come up as tails each time we flip it. Then the average would be 0. Or it may come up as 

heads 10 times in a row. Then the average would be 1. Or it may be some other number between 

0 and 1 depending on how many times we get tails and heads. 

 
Now suppose we repeat this exercise 1000 times. In other words, we flip the same coin 10 

times, and after each set of 10 flips, we calculate the average of those 10 flips. And we do this 

1000 times. After having done this 1000 times, we plot the distribution of these  

 

 

 

 
1Random selection means that every unit in the populatoin has the same probability of being 

selected into the sample. 
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1000 average values using a histogram. Figure 2 shows the histogram for this exercise. While .5 

is the most frequent outcome, there are also cases of averages different than .5. For instance, 

there are close to 200 cases of averages of .4 and .6. These are cases with 6 tails and 4 heads, 

and 4 tails and 6 heads, respectively. As the cases become less likely, they also become less 

frequent. The cases where in all 10 flips we get tails or in all 10 flips we get heads are very rare. 

These are the cases with averages of 0 and 1. 

 
Figure 2: Flipping Coins  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Note that this experiment is an exercise in inference. Our population is the cases of all possible 

coin flips in the world. We are interested in the average value of those flips, where head is 1 and 

tail is 0. And our sample is the set of flips we do. We call this our sample because we do not flip 

the coin an infinite number of times, but we do it only 10 times. So our sample size is 10. And 

because we do this 1000 times, we have 1000 such samples. 

 
Now suppose we repeat the same exercise, but this time, we flip the coin 100 times. 
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And we calculate the average of these 100 flips. And we repeat the same exercise 1000 times. 

We should expect the average to be .5 again but now we will observe values closer to .5 since we 

flip the coin 100 times and then take the average. Figure 3 shows the histogram for this exercise. 

.5 is the most frequent outcome but we also observe averages other than .5. As we get further 

away from .5, those average values become less and less frequent as it becomes increasingly 

unlikely that we get e.g. only 30 heads and 70 tails. Note that now we have a sample size of 100 

and we have 1000 such samples. 

 
Figure 3: Flipping Coins  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Suppose we repeat the same exercise and continue to increase our sample size to 1,000, then to 

10,000 and to 100,000. Figures 4, 5 and 6 show the histograms of the sample averages for these 

three different sample sizes. As the sample size grows, the averages are more and more closely 

centered around .5. 

 
As the sample size grows, we observe another pattern in the distribution of these averages, 

which is highlighted in Figure 7, which shows the distribution of the average 
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Figure 4: Flipping Coins  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Flipping Coins  
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Figure 6: Flipping Coins  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Flipping Coins  
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values with a sample size of 100,000 just like in Figure 6 but more closely, only displaying the 

frequency of values that actually occur. As you can see, the distribution of these averages has a 

bell-shape! The central limit theorem also tells us that this distribution has a mean, which is equal 

to the population mean, and its standard deviation is equal to 
𝜎

√𝑛
  where 𝜎 is the standard 

deviation of the population, and 𝑛 is the sample size. Most of the time, we will not know the 

standard deviation of the population, but we can estimate it pretty accurately with the standard 

deviation of the sample, which we denote by s. The standard deviation of the sample means 

𝑠

√𝑛
  is called standard error of the mean, or simply standard error. 

 
 

The great beauty of the central limit theorem is that no matter what the distribution of the 

underlying variable is, the sample means will be normally distributed. To get back to our example 

of coin flips, the distribution of the variable that denotes heads and tails is clearly not normal, it 

takes the value of 0 50% of the time, and it takes the value of 150% of the time. But the distribution 

of the sample means will be normal. 

 
Why is this theorem so useful? For even modest samples drawn from an unknown distribution, 

the distribution of the sample mean is approximately normal and we know a lot about the normal 

distribution. Most importantly, we know where observations are expected to be. Normal 

distribution is symmetrical around the mean such that the mode, median, and mean of the 

distribution are the same. Another property of the normal distribution is that it has a predictable 

area under the curve within specific distances of the mean. Starting from the mean, and going 

one standard deviation within each direction will capture 68% of the area under the curve. Going 

two standard deviations will capture a little more than 95% of the area. Going three standard 

deviations will capture over 99% of the area. Figure 8 shows one such distribution with a mean of 

0. 

 
So even if we have data from only one sample, we can calculate the mean from that 
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Figure 8: Normal Distribution  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

sample and construct an interval by adding two standard errors to the mean and subtracting two 

standard errors from the mean. The resulting interval will contain the true population mean 95% 

of the time. To understand why, think about how we would get different sample mean values each 

time we flip the coin 100,000 times. Each time we flip the coin 100,000 times, we can construct 

this interval using the sample mean and standard error values we get. And because these sample 

means are normally distributed, we know that we will get sample mean values that are within two 

standard errors of the true population mean 95 percent of the time. Therefore, the intervals that 

we construct by adding and subtracting two standard errors of the mean will also include the true 

population mean 95 percent of the time. 

 
At this point, you may ask yourself: But why don’t we add three standard errors to the mean 

to construct an interval that contains the true mean 99 percent of the time instead of 95? There 

is nothing wrong with that except the fact that the resulting interval would be wider. We would 

have more certainty about where the population mean is but the range of possible values of the 

true mean would also be larger. 

 
So far, we only focused on learning about a single variable in a population, to understand the 

logic of statistical inference. We might be also interested in relationships between two variables 

in a population. The same logic of inference also applies to learning about relationships 

between two variables in a population. To understand how that works, it is useful to introduce a 

new tool: hypothesis testing. 
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Practice Questions for Module 5  
 

1. Please fill in the blanks in the following statement: 
 
Statistical inference is a procedure, in which we use what we know about the 

data from a _______ to infer what is likely to be true about the_______ .  

 

2. For sufficiently large samples, the sample means of a variable that is not 

normally distributed will be normally distributed. 

a) True 

b) False 

 

 

3. The population has a mean of 14 and a standard deviation of 3. The sample 

size is   n=1,000. What is the mean of the distribution of the sample means from 

that population?  

4. The population has a mean of 120 and a standard deviation of 12. The 

sample size is n=16. What is the standard error of the mean? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

13 
 

 
Module 6: Hypothesis Testing & Regression  
 
Classical hypothesis testing begins with a null hypothesis, which is a statement about the 

population that we are interested in. For instance, we can have a hypothesis about a single 

variable, such as ‘the coin is fair’, or 55 percent of British electorate support Brexit. Or it can be 

about a relationship between two variables. For instance, a labour training program has no effect 

on wages. Or the political regime of a country has no effect on economic growth. 

 

So if the null hypothesis is that political regime has no effect on economic growth; the hypothesis 

that it has an effect is the alternative hypothesis. We reject the null hypothesis if we have evidence 

‘beyond a reasonable doubt’ against it. If we do reject the null hypothesis, that means we are fairly 

confident that type of political regime has an effect on economic growth. 

 

One common element across a number of hypothesis tests is the p-value, where p stands for 

probability. P-values are a useful tool to describe the results of a hypothesis test. Suppose we 

are interested in whether there is a relationship between two variables, X and Y: When we test 

whether there is a relationship between X and Y with a sample of data, we compare the 

relationship we observe between X and Y in the sample with what we would expect to see if there 

were no relationship between X and Y in the entire population. The more different the observed 

relationship is from what we would expect if there were no relationship in the population, the 

more confident we are that there is a relationship between two variables. 

 

The p-value, which ranges between 0 and 1, is a tool that tells us the probability of observing the 

relationship in a sample purely by chance, i.e. it is the likelihood that we observe the empirical 

relationship between two variables in a sample if there were no relationship between these two 

variables in the population. Therefore, the lower the p-value, the more confident we are that there 

is a relationship. 
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6.1 Statistical Significance 
 
 
Another way to refer to a relationship between two variables which has a low p-value or is unlikely 

to be due to chance is to say that the relationship between the two variables is statistically 

significant. There are different standards according to which a p-value indicates statistical 

significance. The most common one is to call relationships with a p-value of less than .05 

significant. Some use a more stringent standard of .01, some use a less stringent standard of .1. 

These different critical levels for p-value are called significance levels. More recently, scholars 

have started to simply report the p-value and let the readers evaluate the significance of the 

relationship. 

 
Going back to the discussion of null and alternative hypotheses, if our null hypothesis is that 

there is no relationship between X and Y, p-value and the level of statistical significance of the 

relationship between two variables tell us how confidently we can reject a null hypothesis of no 

relationship between X and Y. 

 
Before we move on, there are two critical points that need to be emphasized with respect to 

p-values and statistical significance: First, low p-values or a statistically significant relationship 

does not mean that there is necessarily a strong relationship between two variables. Second, the 

fact that there is a significant relationship between two variables does not mean that the 

relationship is causal. We will discuss strategies to establish a causal relationship between 

variables in the next module. 

 
 

6.2 Hypothesis Testing: Mistakes 
 
 
There are two different types of error one can make in testing hypotheses and deciding whether 

to reject or fail to reject a null hypothesis: A Type-I error means that you reject the null hypothesis 

when it is in fact true, e.g., we conclude the coin is not fair when in fact it is fair.  
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The probability of a Type-I error is denoted by the Greek letter α. 

 
A Type-II error occurs when we fail to reject the null hypothesis although it is false, e.g., we do not 

conclude the coin is unfair when it is indeed unfair. The probability of a Type-II error is denoted by 

the Greek letter β. Below is a figure that illustrates the two types of errors with an example that 

hopefully makes it easier for you to remember! 

 
Figure 9: Hypothesis Testing: Mistakes  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Type-II errors are such that we fail to reach a conclusion about a significant relationship 

between variables although there is indeed a significant relationship. But in the case of Type-I 

errors, we do wrongfully conclude that there is a relationship. Therefore, generally, Type-I errors 

are considered more serious. 

 
We should also note that there’s a trade-off between the probability of Type-I and Type-II errors.  

As we want to have stronger evidence to reject a null hypothesis, this makes it less likely that 

we reject a true null, but at the same time, it increases our chances of failing to reject a false 

null. Remember that when we do the hypothesis test, i. e. engage in statistical inference, we do 

not know whether the null is true or not. 
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6.3 Hypothesis Testing: Back to the Coin Toss Example 
 
 
Let’s go back to the coin toss example to understand the logic of hypothesis testing. The null 

hypothesis might be that the probability of heads is one-half, i.e. the coin is fair. Formally this 

would be stated as H0: E(X) = 0:5. The alternative is usually the negation of the null. In our example, 

the typical alternative, denoted by H1 is: H1: E(X) ≠ 0:5. 

 

Suppose we wanted to determine whether a coin is fair. We toss it 10 times. It comes up 

heads 9 times. In light of this result, we would be inclined to reject the null hypothesis that the 

coin is fair. In fact, the probability of a fair coin coming up as heads 9 more times out of 10 tosses 

is about 1 percent. The logic of hypothesis testing for various types of hypotheses follows the 

exact same reasoning we just had regarding the coin toss example. 

 

We construct a test statistic that summarizes the relationship between our observed data and 

the null hypothesis. In the case of the coin toss example, it would be the prob-ability of getting 9 

or 10 heads out of 10 times. Then we construct a critical region or rejection region based on our 

null hypothesis. In our example, this means that we decide in advance for how many numbers of 

heads we would reject the hypothesis that the coin is fair. If the test statistic lies in this critical 

region, we will reject the null hypothesis. So if we decide that the rejection region is 9 or more 

heads, having observed 9 heads out of 10 tosses, we reject the null hypothesis of a fair coin. 

 

Let’s see how hypothesis testing works for some of the most commonly used types of 

hypotheses. 
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6.4 Hypothesis Testing: Testing for Means of the Population 

6.4.1 When the Variance is Known 
 
 
Suppose we observe a random sample of 40 professional basketball players. And we want to 

know whether the average height of all professional basketball players is 2 meters or 200cms. 

Our null hypothesis is then H0: µ= µ0 = 200. Our alternative hypothesis is that H1 : µ ≠ 200. Using 

the heights data of 40 players, we calculate the sample mean X̅. Suppose, X̅ = 205. From the 

central limit theorem, we know that the sample means follow the normal distribution and has 

variance     

In statistics, the notation for a normally distributed variable X is X ~ N (mean, variance). To test 

our hypothesis, we start from the assumption that the null is true, such that  

Note that we do this because we want to understand how likely it is for us to observe the mean 

height in our sample if indeed it comes from a distribution with a mean of 200 cms. Now, we need 

to find out how likely it is to observe this sample mean.  

How do we do that? 

 
The special case of a normal distribution with a mean of 0 and variance of 1 is called the standard 

normal distribution. A variable Z with a standard normal distribution is de-noted 

as Z ~ N(0,1). 

 

If a variable has a normal distribution with a mean µ and standard deviation 𝜎, then 

the 𝑍 =
X−µ 

𝜎
  has a standard normal distribution. Why is this a useful result? It is useful because 

now we can use the distribution of the variable Z when we need to find out the likelihood of 

observing specific values of a variable that is normally distributed, such as the sample means!  

To see how this works, let’s look at the so-called Z-table, which shows the likelihood of observing 

values less than or equal to specific values of z. 
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Figure 10: Probabilities and Z-Table  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 11: Standard Normal Distribution  
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Looking at the values in Table 10, we can see that the probability of observing a value less than or 

equal to 1.64 is about 95 percent. Because the distribution of z-scores is symmetric, we can also 

use this table to find out the probability of z scores less than or equal to a negative value. For 

instance, the probability of z-values less than 1.5 is equal to 0.9332. This means that the 

probability of observing z scores less than or equal to -1.5 is 1-0.9332=0.0668. Second, the 

likelihood of observing values less than -z and larger than z are equal to each other. For instance, 

as you can read from the table, the probability of observing a value less than -1.5 is 0.0668. The 

probability of observing z values larger than 1.5 is also 0.0668. 

 
Going back to the example, we know that  has a standard normal distribution.  

Suppose we know in advance the standard deviation of the heights of all the professional 

basketball players. Let’s say it is 𝜎 x=10 cm. Then we can plug in this into the formula for the z-

statistic and get  The chances of observing a z statistic of 3 or larget 

or -3 and smaller is about .0016. We calculate this by looking at Table 10 and reading the value 

at row ‘3.1’ and column ‘0.06’. The value is 0.9992. So, 2 (1-0.9992)=0.0016. This means that the 

chances of observing the sample mean of 205 if the true population mean of heights is 200 (the 

p-value) is very small. So we reject quite confidently the null hypothesis that the average height 

of these players is 200 cms. 
 

How do we decide the level of probability below which we reject the null hypothesis? There is 

no fixed r ule. There are different thresholds used for this purpose. The most commonly used 

threshold level is .05. In other words, if the z score is such that the chances of observing values 

less than -z or larger than z together is less than .05, we reject the null hypothesis at 5% 

significance level. Otherwise, we ‘fail to reject’ it. 
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6.4.2 When the Variance is Not Known 
 
 
Most of the time, we will not know the population variance. If we don’t have access to the whole 

population data, it is likely that we will not know the variance of the values in that population. In 

those cases, we need to use an estimate of the population variance in order to compute the test 

statistic and perform the hypothesis test. The estimate of the population variance is the same 

variance  
 
Similar to before, now we form t-statistic:  

 

 
The logic of the hypothesis test is the same. The only difference is that now the distribution 

of the statistic we compute follows a slightly different distribution, the t-distribution, which is 

symmetric like the normal distribution but has heavier tails. The probability of observing a t-

statistic greater than or equal to a particular value depends on the degrees of freedom. Degrees 

of freedom captures the idea that as the amount of data we use for inference increases, we have 

more confidence that the pattern we observe in this sample reflects what is true about the 

underlying population. The degrees of freedom for the t-statistic in testing for the population 

mean is equal to the number of observations (n) - 1. So in our example, the degrees of freedom 

is 100-1=99. 

 
In Table 12, we can see the probabilities of obtaining values less than or equal to spe-cific t-

scores. For instance, with 10 degrees of freedom, there is a 90 percent probability of obtaining a 

value less than or equal to 1.372. There is a 95 percent probability of obtaining a value less than 

or equal to 1.812. These t-scores depend on the degrees of freedom. For different degrees of 

freedom, we have different values for each probability. Note also that with larger degrees of 

freedom, the critical values for each probability become smaller. 
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Figure 12: Probabilities and t-Table  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Suppose the standard deviation in our sample is equal to s=9. Then, the t-statistic is  

 

.  Looking at Table 12, we see that it does not report probabilities for 9= 40 

 

100 degrees of freedom but we see that the probability of obtaining values less than -3.16 or 

larger than 3.16 are .002 for 120 degrees of freedom, and the probability of obtaining values less 

than -3.232 or larger than 3.232 are .002 for 60 degrees of freedom. So the crit-ical values for 

obtaining the same probabilities with 100 degrees of freedom must be a number in between. 

Therefore, the chances of observing values less than -3.51 or greater then 3.51 should be less 

than 0.002, which means that the p-value is very low. We can con-fidently reject the null 

hypothesis that the average height of basketball players is equal to 200cms. 
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6.5 Difference of Means Test 
 
Suppose we want to know whether there is a relationship between being a professional basketball 

player and height. Suppose, in addition to the sample of data we have for the players, we also 

have a random sample of data from 100 basketball fans. Let’s assume that the average height of 

the fans is 175 cms and the standard deviation is 12 cms. To see if this difference of heights is 

significant, we conduct a difference of means test. 

 
Let’s call the mean height of professional players  X̅1 and the mean height of fans X̅2 . 

 

Let’s also call the standard deviation of the heights of players s1 and the standard  

 

deviation of the fans s2. n1 is the sample size of players, which is 40, and n2 is the sample size  

 

of fans, which is 100. We construct the following t-statistic: 

 
 

  

 
The degrees of freedom for the difference of means test is n1 - 1 + n2 - 1 = 138. Looking at 

Table 12, it is clear that the chances of observing this statistic value if there was no significant 

difference in means is very very small so we confidently reject that there is no difference. 

 
Can we conclude based on this evidence that there is a causal relationship between playing 

professional basketball and height? In other words, can we conclude that play-ing professional 

basketball makes you taller? We certainly can’t, for a number of reasons: 

  
First, despite the statistically significant relationship between playing professional bas-ketball 

and height, this might also be because taller individuals are more likely to play and succeed in 

professional basketball. This is an example of reverse causality. Second, it is possible that those 
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who are professional basketball players are more likely to be male (simply because there are 

more male players) and because men are taller than women, basketball players might be taller 

than the general population. Or, players are younger than the general population, and therefore on 

average taller than the population of basketball fans. These are examples of omitted variable bias: 

Our difference of means test omits the effect of gender and age on likelihood of playing 

basketball and height. 

 
So how do we run statistical analyses that allow us to establish the causal effect of an 

independent variable X on a dependent variable Y? Until recently, the main tool for this purpose 

used to be the regression analysis, which we will discuss at the end of this module. We should 

keep in mind that in the last twenty years or so, researchers have started to utilize a new set of 

tools in addition to regression analysis to establish causal relationships, which we will discuss in 

the next module. 

6.6 Confidence Intervals 
 
 
Before we move on to regression analysis, let’s discuss one last concept widely used in statistical 

analysis: confidence intervals. Confidence intervals report the range of values where we think the 

true parameter lies. While the sample mean gives us a point estimate for the population mean, 

we usually want to convey how certain we are about this estimate. An x%-confidence interval for 

the population mean is a range for which we can say with x% confidence that it contains the true 

population mean. The most widely used confidence interval is 95 % confidence interval. When it 

comes to inference about population mean of a variable X, in general, we can say with 95% 

confidence that the interval            
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6.6.1 Example: Turkish Public Opinion on Syrian Refugees 
 
 
In a survey conducted in 2014, a sample of 1221 Turkish citizens were asked whether they 

support Turkish government paying for Syrian refugees’ healthcare.2 43.5% of the sample (531 

people) don’t support it while 56.5% of the sample (690 people) support it. Figure 13 shows the 

histogram of the answers. 

 
Figure 13: Turkish Citizens’ Views on Government Support for Syrians in Turkey  
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Number of Respondents: 1221 
Source: Sinmazdemir et al. 2016. Refugees, Xenophobia, and Domestic 
Conflict: Evidence from a 
Survey Experiment in Turkey 

 
 
 
 

The question that we are interested in is as follows: What percentage of the Turkish 

population supports the government to pay for the healthcare of Syrian refugees? If we con - 

  
2The details of the survey can be found in the following article: Getmansky, Anna, Tolga 

Sinmazdemir, and Thomas Zeitzoff. 2018. ‘Refugees, Xenophobia, and Domestic Conflict: 

Evidence from a Survey Experiment in Turkey’ Journal of Peace Research, Volume: 55, Issue: 4. 

There are currently about 3.5 million Syrian refugees in Turkey who have fled the civil war in Syria. 
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Using the Central Limit Theorem, we can say with 95% confidence that the percentage of 

Turkish population that support their government paying for healthcare for Syrian refugees is 

between 53.7% and 59.3%. 

 

Remember this is only a sample of 1221 Turkish citizens. The population of Turkey is about 

80 million! So there is some uncertainty around our estimate of 56.5% of Turkish citizens 

supporting their government to pay for Syrians’ healthcare. But despite that, it is quite remarkable 

that we can have a fairly reasonable range of values for the level of support in a population of 80 

million based only on a single sample from that population, which is 1221 people, or about 0.0015 

percent of the total population! 
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6.7 Regression 

6.7.1 Bivariate Regression 
 
 
To understand how regression works, let’s start with an example with only one independent 

variable. A regression of this type is called bivariate regression, meaning that we have a two-

variable regression, with one dependent and one independent variable. The main idea of bivariate 

regression is that we are ‘fitting the best line’ through a scatterplot of data. Suppose we have 

income and education data for a sample of 40 professionals living in London. Figure 14 displays 

a scatter plot of this data. Education is measured in years of education completed. Income is 

measured in thousands of pounds. Each dot on the plot denotes one of the individuals in the 

sample. There is large variation in income levels: While some individuals have low income, below 

40,000 pounds, some have much higher incomes, for instance 100,000 pounds. It is clear that 

there is a strong, positive relationship between years of education and income. The key question 

is how to estimate the impact of each additional years of education on income and how 

significant this impact is. This is where regression analysis comes in. 

 
Figure 14: Scatterplot of Data: Income and Education  
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Mathematically, regression analysis involves the representation of a relationship be-tween 

two variables X and Y. In the case of bivariate regression, we represent this relationship with 

the following equation: 

Yi =α+ βXi +ϵ i 

 
Plugging in the names of the variables we use in our example, this becomes: 

 

incomei =α + β educationi + ϵi 

 

Here, the equation represents how we model the determinants of income. It is simply a 

function of education and some other random factors, which we summarize with ϵ . α is the 

intercept, which in substantive terms captures the income of an individual with no education.3 βis 

the parameter that captures the relationship between education and income. If β is positive, 

higher education is associated with higher income. If it turns out to be negative, higher education 

is associated with lower income, which is very unlikely. 

 
In a regression analysis, the goal is to draw a line that describes the relationship be-tween the 

independent and the dependent variable as closely as possible. In this example, our goal is to 

draw the line that comes as close as possible to all the points in our scatterplot of income and 

education values of individuals in our sample. Mathematically, this is the line that minimizes the 

distance between the line and all the data points. It is not possible to draw a line that goes through 

all the data points, there is no straight line that can accomplish that! Therefore, the value of 

income for each observation on the line will not be the same as the actual income of an individual 

in our sample. The vertical distance between the income value on the line and the actual income 

of an individual is called the residual. The best fitting line through the scatter plot of data is found 

by minimizing the sum of the squares of these residuals.4 This type of regression is called ordinary 

least squares (OLS) regression, a term you will see in many of the research papers you will read 

throughout your studies in the SPP programme. 

 

3To see why this is the case, think of the value of income if education is equal to 0. 
 

4We can not use the sum of the residuals because some of these residuals will be negative, 
and some will be positive, and they would cancel each other out. 
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Figure 15 shows the same scatter plot of data together with the estimated regression line. 

 
Figure 15: Example of Bivariate Regression: Income and Education  
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Remember that a line is summarized by its slope and its intercept. Using statistics software, 

it is very easy to compute the slope (β ) and the intercept (α ) of this regression line. If we indeed 

run a regression analysis of income and education using our sample of data on a statistics 

software, this is what we would get: 

 
There is a lot of information on this table but for now, please only focus on the row highlighted 

in yellow. If you look at Figure 16, the coefficient next to education is 7.40. This is equal to the 

slope of the best fitting line plotted in Figure 15, and is our estimate of β. The substantive meaning 

of this slope is that each additional year of education is associated with a 7400 pound increase 

in income. 

 
Regression is just another tool of statistical inference, which we use to learn about 
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Figure 16: Bivariate Regression Table: Income and Education  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a population using a sample of data from that population. In this case, our population is all 

professionals living in London. We try to learn about the effect of education on income using data 

only on 40 of those professionals. As it is the case with all other cases of inference, regression 

also involves some uncertainty around the parameter estimates. Next to the estimated effect of 

education on income ( β), you see the estimated standard error around it. At the right end of the 

row, you see the 95 % confidence interval of the slope parameter. You also see the t-statistic and 

the associated p-value of the null hypothesis that education has no effect. As you see, the p-value 

is very small so we can confidently reject the hypothesis that education has no effect. 

 
Can we interpret this as the causal effect of education on income? Not really because there 

can be other factors that affect both an individual’s level of education and income. One such factor 

is family income. It is plausible to think that those with higher family income end up being more 

educated, and also have higher incomes themselves perhaps because of their better family 

connections. Therefore, the estimated impact of education on income may also include the effect 

of this ‘omitted variable’ of family income. 
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6.7.2 Multiple Regression Analysis 
 
 
How do we take into account the effect of additional independent variables in the regres-sion 

analysis even if our main interest is on the effect of another independent variable? We simply add 

them to the regression analysis. These additional independent variables are commonly referred 

to as control variables. Regressions with more than one indepen-ent variable are called multiple 

regression. The equation of a multiple regression with two independent variables looks as 

follows: 

 

 
Suppose, we have data also on the family income of these individuals in our sample. Figure 

17 shows the scatterplot of family income and individual income. There is a strong, positive 

relationship between the two. When we include family income in the regression analysis, we get 

the results in Figure 18. 

 
There is no need to go too much into specifics of how these parameter estimates are 

calculated. At this stage, it is sufficient for you to know that multiple regression analysis 

estimates the impact of an independent variable X on the dependent variable Y by only using 

those components of X and Y that can not be accounted or explained by the third variable Z. 

Therefore, in our example, the coefficient estimate for education, β1 tells us the impact of 

education on income controlling for the effect of family income. As you see, once family income 

is added as a control, the effect of education on income drops drasti-cally. Now the impact of an 

additional year of education on income is about 1,627 pounds. Similarly, we can interpret the 

coefficient estimate for family income, β2 as the impact of 
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Figure 17: Scatterplot of Data: Income and Family Income  
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Figure 18: Multiple Regression Table: Income, Education and Family Income  
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family income on individual income, controlling for the effect of education. Each additional 

1,000 pounds of family income is associated with an increase in income of about 
 
406 pounds. 

 
Most of the time, it is hard to measure and control for all the necessary variables in a 

regression. Therefore, scholars have started using more innovative methods that go beyond 

multiple regression with increasing frequency. We discuss these methods in the next module. 
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Practice Questions for Module 6 
 

1. The higher the p-value of the test for a relationship between two variables, the more 
confident we are that there is a significant relationship. 

 
True 
False 

 

2. Please fill in the blanks in the following statement: 
 

Type-I error occurs when w  a  null hypothesis. Type-II 

error occurs when we a  null hypothesis. 

3. Suppose you have a sample of 25 students from the MPA programme, and 

their mean exam score is 67. The standard deviation of their scores is 10. 

Using this sample of data, please test the hypothesis that the mean test score of 

all students in the programme is 60. Use the significance level of 0.05. 

4. In the latest YouGov survey in UK, 811 out of 1763 British adults say that their most 

favorite outcome of Brexit negotiations is to remain in the European Union. You 

can ac- cess the survey results at the following link: 

https://d25d2506sfb94s.cloudfront.net/cumulus_uploads/document/ete4gzwp4j/UCL_

Brexit_190529_w.pdf. Please calculate the 95% confidence interval for the percentage 

of British adults in UK, whose most favorite outcome is to remain in the EU. 

 
 
 
 

https://d25d2506sfb94s.cloudfront.net/cumulus_uploads/document/ete4gzwp4j/UCL_Brexit_190529_w.pdf
https://d25d2506sfb94s.cloudfront.net/cumulus_uploads/document/ete4gzwp4j/UCL_Brexit_190529_w.pdf
https://d25d2506sfb94s.cloudfront.net/cumulus_uploads/document/ete4gzwp4j/UCL_Brexit_190529_w.pdf


 
 

34 
 

Module 7: Strategies for Figuring Out Whether X Caused 
(A Change In) Y  
 

There are five basic strategies used by researchers to figure out whether an independent variable 

X caused a change in the dependent variable Y. These strategies are natural experiments, 

matching, instrumental variable regression, difference-in-difference, and regression discontinuity. 

5 As we discuss each of these methods, we will also learn about examples of research in political 

science that uses these methods. The citations of each of these papers is included in the 

References section at the end. 

 
The best way to think about how these methods work is to understand their connec-tion to 

the experimental method, which we briefly summarize below.  

7.1 The Experimental Method 
 
 
There are three features of the experimental method: 

 
1.Researchers compare the response of subjects in the treatment group to the response of 

subjects in the control group. The treatment group consists of those who have received an 

intervention, a program etc. whose effect on the response of the subjects the researcher cares 

about. The control group consists typically of those who have not received any intervention. For 

instance, in an experiment to determine the effectiveness of a new drug, the treatment group 

would be those who receive the new drug, and the control group would be those who don’t. 

 
2. Subjects are randomly assigned to treatment and control groups. This is done through 

lottery, drawing numbers from an urn or any other mechanism that ensures that who is in the 

treatment and control groups is unrelated to the characteristics of the subjects. 

 
3. The application of the treatment is under the control of the researcher. 

 
Thanks to random assignment, the researcher ensures that the treatment and the control                                 

 
5Note that you will learn about each of these methods in courses that are part of your core 

curriculum in greater detail. Here, our goal is to familiarize you with the logic of inference these 
methods rely on. 
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groups are not systematically different from each other and therefore, in the aggregate are 

identical to each other except the fact that those in the treatment group have received the 

treatment and those in the control group have not. Therefore, if the researcher observes a 

difference between the two groups’ responses or values of the dependent variable, that difference 

must be because of the treatment assigned by the researcher. 

 
 

7.2 Natural Experiments 
 
 
Natural experiment is a research design that is inspired by the experimental method. One 

difference is that the data in natural experiments are observational, i.e. it is collected from 

naturally occurring phenomena in the world around us, as opposed to the experimental data, 

which -as we discussed above- is generated under conditions controlled by the researcher. 

 
Despite the data being observational, it is possible that sometimes, the researcher can 

reasonably claim that the variation in the treatment or the independent variable across units of 

observation are ‘as-if-random’. Based on this claim, one can show that the units in the treatment 

and the control group are similar to each other on all relevant third factors Z, except the fact that 

some are treated, and some are not. Therefore, any difference in the average value of the 

dependent variable Y between the treatment and the control group must be due to the ‘causal 

effect’ of the treatment. 

 
The earliest example of a natural experiment comes from where you will study next year, the 

city of London. London suffered from a cholera epidemic in 1853-1854. The dominant theory to 

explain these cholera outbreaks at the time was the theory of ‘bad air” (miasma). John Snow, an 

anaesthesiologist, believed that cholera is an infectious disease carried through the water. 

 
To prove his point, Snow conducted the following analysis: Large areas of London 
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were served by two water companies: the Lambeth, and the Southwark and Vauxhall. In 1852, the 

Lambeth moved its intake pipe upstream on the Thames, obtaining a supply of water free from 

the sewage of London. The overlapping area in Figure 19 with houses served by both companies 

became the focus of Snow’s natural experiment. Snow obtained records on cholera deaths 

throughout London and gathered information on the company that provided water to the house 

of each deceased as well as the total number of houses served by each company in each district 

of the city. 
 

Figure 19: London, the Site of First Natural Experiment  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Among houses served by Southwark and Vauxhall, the death rate from cholera was 315 per 

10,000. Among houses served by Lambeth, the death rate was only 37 per 10,000. This dramatic 

difference provided compelling evidence for the impact of water supply source on deaths from 

cholera. 

 
This is compelling evidence because as Snow explains, ‘The mixing of the (water) supply is of 

the most intimate kind. The pipes of each Company go down all the streets, and into nearly all the 

courts and alleys. A few houses are supplied by one Company and a few by the other, according 

to the decision of the owner or occupier at that time when the Water Companies were in active 

competition. In many cases a single house has a supply different from that on either side. Each 

company supplies both rich and poor, both large houses and small; there is no difference either 
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in the condition or occupation of the persons receiving the water of the different Companies. . . . 

It is obvious that no experiment could have been devised which would more thoroughly test the 

effect of water supply on the progress of cholera than this......the move of the Lambeth company’s 

water pipe meant that more than three hundred thousand people of all ages and social strata 

were divided into two groups without their choice, and, in most cases, without their knowledge 

[italics added]; one group being supplied with water containing the sewage of London, and, 

amongst it, whatever might have come from the cholera patients, the other group having water 

quite free from such impurity’ (Snow 1855, 75). 

 
In short, the evidence is compelling because Snow could convincingly argue that only the 

water source distinguished the houses in the treatment group from the houses in the control 

group. He therefore could make the inference that the difference in the cholera death rates 

between the two groups was due to the effect of the water supply. 

 
Natural experiments have become one of the standard toolkits for scholars doing re-search 

to establish causal effects of policies or institutions on political, economic and so-cial outcomes. 

For instance, Jones and Olken (2005) study the effect of political leaders on economic 

performance by comparing growth before and after a leader dies due to natu-ral causes, 

unrelated to the economic conditions in the country. They find that leaders do affect growth 

especially in autocratic settings. To examine the impact of access to arms on violent crime, Dube 

et al. (2013) focus on the aftermath of the expiration of the U.S. Federal Assault Weapons Ban in 

2004, as a result of which there was a gun spillover to Mexican municipios near the states of 

Texas, Arizona, and New Mexico, while no such spillover happened in municipios near California, 

which maintained its state-level ban. The authors find that municipios closer to non-California 

border did indeed experience an increase in homicides. 
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7.3 Matching 
 
 
Matching tries to control for variables that affect both the treatment and the dependent variable 

by matching treated units to one or more control units that are as similar as possible to the treated 

unit on the values of the control variables. There are various ways to match the treated and control 

units with each other. But most importantly, this method relies on the assumption that there are 

no confounding variables that the researcher is unable to measure or unaware of. 

 
Gilligan and Sergenti (2008) study whether UN interventions in conflicts after the Cold War 

cause peace. Which conflicts UN intervenes is not randomly assigned, therefore, a simple 

comparison of conflicts with and without UN intervention would not give an un-biased estimate 

of the effect of UN interventions. Instead, they match cases of UN inter-ventions to cases with no 

UN interventions, on a number of confunding variables that affect both the likelihood of UN 

intervention and the likelihood of the duration of peace or the end of conflict. These factors 

include battle deaths from the conflict, ethnic frac-tionalization, population size, how 

mountainous the country is, the number of military personnel in the conflict country, and political 

regime of the country. The authors find that UN interventions prolong peace after the conflict ends 

but do not have an effect on ending on-going conflicts. 

 
Lyall (2010) examines the effect of the ethnic identity of the soldiers conducting coun-

terinsurgency operations in Chechenya on the subsequent insurgent attacks during the Second 

Chechen War (2000-2005). Having matched operations in villages conducted by pro-Russian 

Chechen units with those conducted by Russian-only units, he finds that op-erations by Chechen 

units reduce attacks relative to operations by Russian-only units. He matches these operations 

on a number of demographic, spatial and conflict-related con-founding variables, including the 

population of the settlement, its religious orientation, poverty level, and how geographically 

isolated the village is. 
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7.4 Instrumental Variable Regression 
 
 
An alternative method to estimate causal effects looks for a variable that explains who is in the 

treatment and who is in the control group but has no other relation to the dependent variable. 

Such a variable is called an instrument. If the researcher has access to such an instrumental 

variable, she can estimate the effect of the treatment on the dependent variable by examining the 

effect of the instrument on the dependent variable, and the effect of the instrument on the 

treatment variable. For instance, Acemoglu et al. (2001) estimate the effect of political institutions 

on economic performance in former colonies, using the settler mortality rates in these former 

colonies as an instrument for the quality of institutions. Settler mortality is a ‘good’ instrument to 

the extent that it has an effect on the quality of institutions, and has no effect on economic 

performance other than through its effect on institutions. 

 
Several other recent papers in political science and economics have used instrumental 

variable regression. For instance, Miguel et al. (2004) study the effect of growth shocks on the 

likelihood of civil war in Africa. They use rainfall growth as an instrument for economic growth. 

Rainfall is a ‘good’ instrument to the extent that it is related to growth rates in the sample of 

African countries the authors study (which it does) and the only way rainfall affects likelihood of 

civil war is through its effect on growth rates. The au-thors find that negative growth shocks 

significantly increase the likelihood of civil war in Africa: A five-percentage point negative growth 

shock increases the likelihood of a civil war the following year by one-half. 

 
Nunn and Wantchekon (2011) study the causes of high levels of mistrust in the African 

continent today and found that it is caused by the transatlantic and Indian Ocean slave trades in 

the past: Using survey data on trust levels among various ethnic groups, they show that 

individuals from groups most affected by the slave trade have lower trust lev-els. The authors use 

the distance of an individual’s ethnic group from the coast to the slave trade as an instrument. 

This distance variable is a good instrument since it is corre-lated with the exposure of an ethnic 

group to the slave trade. This is because the purchase of slaves happened at the coast. And the 

distance of a group from the coast is also plau-sibly uncorrelated to any other characteristics of 

the current members of the same ethnic group that affects their levels of trust. 
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7.5 Difference-in-Difference 
 
 
This approach starts with the idea of comparing the value of the dependent variable be-fore and 

after the application of the treatment. But instead of making this comparison only for the 

treatment group, one compares the change in the value of the dependent variable in the treatment 

group before and after the treatment to the change in the value of the dependent variable in the 

control group before and after the treatment (Remember, the treatment is applied only to the 

treatment group but we still calculate the change in dependent variable in the control group as 

well.). The key feature of this method is that the researcher needs to have control units that are 

not necessarily identical to the treat-ment units but the treatment and control units should only 

change with the treatment, and there should not be other changes that affect the two groups 

differently. 

 
One of the well-known examples of this type of research design is Card and Krueger (1994), who 

study the effect of miminum wage on employment in the states of New Jersey and Pennslyvania. 

To do this, they utilize the fact that New Jersey raised state minimum wage from $ 4.25 to $ 5.05 

in April 1992, while the minimum wage in the neighbouring Pennslyvania remained the same both 

before and after April 1992. The authors compare the change in the employment rate in the state 

of New Jersey from February 1992 to November 1992 to the change in the employment rate in 

the state of Pennslyvania from February 1992 to November 1992. 
 

The key assumption is that the employment trends would be the same in both states, in other 

words, nothing else that can affect the employment rate has changed differently between the two 

states in the same time period. Under this assumption, the authors’ comparison gives the effect 

of the minimum wage on employment rate. The conclusion of the authors is that the rise in the 

minimum wage does not reduce employment. 

 
Scheve and Stasavage (2012) study the effect of mass mobilization for warfare on in-

heritance taxation in a sample of countries from Europe and North America. They com-pare the 

change in the top rates of inheritance taxes in countries before and after mass mobilization for 

warfare in major wars (including the two World Wars) to the change in the top rates of inheritance 

taxes in countries that did not participate in these wars before and after the mass mobilizations 
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in the participating countries. The authors find strong evidence of mass mobilizations having a 

strong positive effect on the inheritance taxes. 

7.6 Regression Discontinuity 
 
 
This method is based on the idea that in some real-world cases, rigid rules decide who gets into 

a particular program or receive an intervention. These rules are rigid in the sense that units with 

values on a variable or score that are slightly above the cutoff receive the treatment while those 

slightly below do not. Hence, one can reasonably argue that among those who are slightly above 

and below the cutoff, and therefore who is assigned into the treatment and who is assigned into 

the control group is ‘as-if-random’. 

 
The first application of this method was by Thistlethwaite and Campbell (1960) who 

estimated the effect of a National Merit Award on subsequent student performance by comparing 

students whose test scores were just high enough to win the award to those whose scores fell 

barely short. The most common application of this method in political science is to examine the 

impact of election results on a number of political and economic outcomes of interest. 

 
For instance, Hainmueller and Eggers (2009) compare the wealth of deceased mem-bers of 

the House of Commons in UK to those candidates who narrowly lost elections. They find that 

serving in office doubles the wealth of Conservative MPs, while it has no significant effect on the 

wealth of Labor MPs. The key assumption of this method for this study is that Conservative 

(Labor) MPs who narrowly won are similar to the Conserva-tive (Labor) candidates who narrowly 

lost. 

 
Another research area that uses regression discontinuity examines the impact of poli-cies 

and institutions on outcomes in cases where the policy or institution is determined by the 

population size of subnational units in a country. The pioneering example in this area is 

Pettersson-Lidbom (2012) who look at the effect of the size of the municipal council on the 

municipal spending in Sweden and Finland by comparing spending in cities above and below the 

population threshold that determines the size of the municipal council. 
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Practice Questions for Module 7 

 

1. Please fill in the blanks in the following statement: 

In an experiment to determine the effectiveness of a new drug, the group would 
be those who receive the new drug, and the group would be those who don’t. 

 

2. Why is it important that subjects are randomly assigned to the treatment and control 

groups in an experiment? Briefly explain. 

 

3. What type of data are used in natural experiments? 
 
 

4. The legal drinking age in US is 21. Suppose we are interested in establishing the 

causal effect of legal access to alcohol on death rates in US. How can we use this 

information to construct a research design to establish this causal effect? Briefly 

describe. 
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