ST201 Half Unit
Statistical Models and Data Analysis
This information is for the 2024/25 session.
Teacher responsible
Dr Yunxiao Chen COL 5.16
Availability
This course is available on the BSc in Accounting and Finance. This course is available as an outside option to students on other programmes where regulations permit and to General Course students.
Also available to students who have studied statistics and mathematics to the level of ST107 Quantitative Methods or equivalent.
This course cannot be taken with ST211 Applied Regression or DS202 Data Science for Social Scientists.
This course is not controlled access. If you request a place and meet the criteria you are likely to be given a place.
Pre-requisites
Quantitative Methods (ST107) or equivalent.
"Previous programming experience is not required but students who have no previous experience in R must complete an online pre-sessional R course from the Digital Skills Lab before the start of the course (https://moodle.lse.ac.uk/course/view.php?id=7745)”
Course content
A second course in statistics with an emphasis on data analysis with applications in the social sciences. Students will gain hands on experience using R-- a programming language and software environment for data analysis and visualisation. The course contains five topics, including (1) principles of statistical analysis, including data preparation, statistical models, regression and classification, inference, prediction, and bias-variance tradeoff, (2) multiple linear regression, including its assumptions, inference, data transformations, diagnostics, model selection, (3) regression tree method, (4) logistic regression, including odds ratios, likelihood, classification, and ROC curve, and (5) Bayes rule for classification and linear discriminant analysis.
Teaching
This course will be delivered through a combination of classes and lectures, totalling a minimum of 36 hours across Winter Term and 2 hours of lecture in the Spring Term. Students will be given their assessed project in week 9 which is due in Week 1 of Spring Term.
Formative coursework
Exercise questions in computer workshops and a quantitative research project.
Indicative reading
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning. New York, NY: Springer.
Fox, J. (2015). Applied regression analysis and generalized linear models. Thousand Oaks, CA: Sage Publications.
Assessment
Exam (80%, duration: 2 hours) in the spring exam period.
Coursework (20%) in the WT.
Key facts
Department: Statistics
Total students 2023/24: 23
Average class size 2023/24: 12
Capped 2023/24: No
Value: Half Unit
Course selection videos
Some departments have produced short videos to introduce their courses. Please refer to the course selection videos index page for further information.
Personal development skills
- Leadership
- Self-management
- Team working
- Problem solving
- Application of information skills
- Application of numeracy skills
- Specialist skills