MY557      Half Unit
Causal Inference for Observational and Experimental Studies

This information is for the 2020/21 session.

Teacher responsible

Dr David Hendry

Availability

This course is available on the MPhil/PhD in Economic Geography, MPhil/PhD in Environmental Economics, MPhil/PhD in Regional and Urban Planning Studies, MPhil/PhD in Social Research Methods, MRes/PhD in Management (Employment Relations and Human Resources), MRes/PhD in Management (Marketing), MRes/PhD in Management (Organisational Behaviour) and MRes/PhD in Political Science. This course is available as an outside option to students on other programmes where regulations permit.

Pre-requisites

Knowledge of multiple linear regression and some familiarity with generalised linear models, to the level of MY452/MY552 or equivalent. Familiarity with notions of research design in the social sciences, to the level of MY400/MY500 or equivalent

Course content

This course provides an introduction to statistical methods used for causal inference in the social sciences. Using the potential outcomes framework of causality, topics covered include research designs such as randomised experiments and observational studies. We explore the impact of noncompliance in randomized experiments, as well as nonignorable treatment assignment in observational studies. To analyse these research designs, the methods covered include experiments, matching, instrumental variables, difference-in-difference, and regression discontinuity. Examples are drawn from different social sciences. The course includes computer classes, where the R software is used for computation.

Teaching

This course is delivered through a combination of classes and lectures totalling a minimum of 20 hours across Lent Term. This year, the lectures may be delivered live or as short online videos. The classes will be live and in person, and delivered online or in class. This course has a reading week in Week 6 of LT.

Formative coursework

Exercises from the computer classes can be submitted for feedback.

Indicative reading

Angrist, J. D. and Pischke, J.-S. (2009). Mostly Harmless Econometrics. Princeton University Press.

Rosenbaum, P.R. (2010). Design of Observational Studies. Springer.

Holland, Paul W. “Statistics and Causal Inference.” Journal of the American Statistical Association 81(396): 945-960.

Assessment

Coursework (100%, 4000 words).

Key facts

Department: Methodology

Total students 2019/20: 13

Average class size 2019/20: 3

Value: Half Unit

Guidelines for interpreting course guide information

Important information in response to COVID-19

Please note that during 2020/21 academic year some variation to teaching and learning activities may be required to respond to changes in public health advice and/or to account for the situation of students in attendance on campus and those studying online during the early part of the academic year. For assessment, this may involve changes to mode of delivery and/or the format or weighting of assessments. Changes will only be made if required and students will be notified about any changes to teaching or assessment plans at the earliest opportunity.