ST421 Half Unit
Developments in Statistical Methods
This information is for the 2014/15 session.
Teacher responsible
Dr Wicher Bergsma COL 6.06
Availability
This course is available on the MSc in Econometrics and Mathematical Economics, MSc in Statistics, MSc in Statistics (Financial Statistics), MSc in Statistics (Financial Statistics) (Research) and MSc in Statistics (Research). This course is not available as an outside option.
Pre-requisites
Students must have completed Statistical Inference: Principles, Methods and Computation (ST425).
It is also useful to take ST411: Regression, Diagnostics and Generalised Linear Modelling in parallel to this course.
Course content
Our aim is to teach students important statistical methodologies that reflect the exciting development of the subject over the last ten years, which include empirical likelihood, MCMC, bootstrap, local likelihood and local fitting, model Assessment and selection methods, boosting, support vector machines. These are computationally intensive techniques that are particularly powerful in analysing large-scale data sets with complex structure. A selection from the following topics. Robustness of likelihood approaches: distance between working model and "truth", maximum likelihood under wrong models, quasi-MLE, model selection with AIC, robust estimation. Empirical likelihood: empirical likelihood of mean. Bayesian methods and Markov chain Monte Carlo (MCMC) basic Bayes, Gibbs sampler, Metropolis-Hastings algorithm. Elements of statistical learning: global fitting versus local fitting, linear methods for regression, splines, kernel methods and local likelihood. Model assessment and selection: bias-variance trade-off, effective number of parameters, BIC, cross-validation. Further topics: additive models, varying-coefficient linear models, boosting, neural network, support vector machines. The course will be continuously updated to reflect important new developments in statistics.
Teaching
20 hours of lectures and 10 hours of seminars in the LT.
Indicative reading
T Hastie, R Tibshirani & J Friedman, The Elements of Statistical Learning: Data Mining, Inference and Prediction; Y Pawitan, In All Likelihood: Statistical Modelling and Inference Using Likelihood; M A Tanner, Tools for Statistical Inference.
Assessment
Exam (100%, duration: 2 hours) in the main exam period.
Key facts
Department: Statistics
Total students 2013/14: 31
Average class size 2013/14: 31
Controlled access 2013/14: No
Lecture capture used 2013/14: No
Value: Half Unit
Personal development skills
- Application of numeracy skills