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About the Living 
Bibliography Project
The Living Bibliography Project is a first-of-its-kind authoritative, curated synthesis and listing 

of all the best scientific reports and studies on the sentience and cognition of selected animal 

species—kept current and relevant—for the purpose of advancing animal interests. This report 

is the inaugural volume in the series, commissioned by the Brooks Institute for Animal Law and 

Policy and authored by Jonathan Birch (editor-in-chief), Peter Morse, Alexandra K. Schnell, and 

Piero Amodio. The authors believe this work to be current as of January 2025. 

Overarching Methodology 

The Brooks Institute is pursuing an effort to advance animal law and policy through the use of 

science and effective communication. Our goal is to create new bridges between law, science, 

and advocacy that prompt a paradigm shift for nonhuman animal protection. Our methodology 

calls for the collection, collation, integration, and synthesis of scientific studies in nonhuman 

animal sentience, cognition, and agency. Through this initiative, the important roles that 

nonhuman animals play in society and culture will hopefully be recognized and a higher moral 

understanding of nonhuman animals will emerge. We believe this philosophical evolution will 

form the basis for—and support—legal change, moving the field of animal law away from a 

property paradigm to a protection and rights paradigm. 
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Citable Authority

Our goal is to create a Citable Authority for nonhuman animal sentience and cognition: a policy-

relevant scientific bedrock that can be used to significantly influence legal precedent and public 

policymaking in service of animal protection. This information can also be utilized in litigation 

and advocacy for animal well-being, education, and as a practical scientific resource.  

The Living Bibliography Project seeks to answer the question, “How do we create an 

understandable, accessible, and unbiased presentation on the current science of the cognition, 

sentience, and agency of a specific animal species?” The purpose of this project is to develop and 

maintain practical and authoritative science-based summaries that any interested person can 

use to articulate an individual species’ attributes of sentience, cognition, and agency—without 

the need to undertake or commission significant further research. We have commissioned a 

library of comprehensive reports on strategically chosen high-impact species, to be made readily 

available to policymakers, advocates, and others for their own uses. 

At its simplest level, each Living Bibliography will explore what we know, what we don’t know, 

and what we would still like to know about these animal species.

How to Use this Document

The Brooks Institute has selected a number of “gateway” animal species as subjects for our 

Living Bibliography library, with an interest in those whose characteristics may be translatable 

to other species. We refer to these bibliographies as “living” because of our intention to keep the 

research contained within them current—updated at least annually. Each Living Bibliography 

will be created and maintained by a panel of experts on that particular species to allow lawyers 

and advocates to easily represent the species’ inherent characteristics using only these materials. 
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Views Expressed Disclaimer

The Brooks Institute is providing this report as an informational and educational public service, 

but it is neither an endorsement nor statement of Brooks Institute policy. Reference to any 

specific product, service, organization, or person does not constitute a representation by or 

opinion of the Brooks Institute. The views and opinions expressed, and information provided by 

the authors are their own (as the subject matter experts).

Please note that the Brooks Institute for Animal Law and Policy and the Living Bibliography 

authors assume no responsibility or liability for any errors or omissions. The information 

contained in this report is provided on an “as is” basis with no guarantees of completeness, 

accuracy, usefulness, or timeliness. 
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Introduction
Octopuses, squid, and cuttlefish are remarkable creatures, famed for their intelligence. They are 

invertebrates—animals without a backbone—and are much more distant from us in evolutionary 

terms than our fellow mammals, far more distant even than birds, reptiles, and fishes. The last 

common ancestor of humans and octopuses lived over 560 million years ago. These animals have 

evolved intelligence by a different path, and their ways of perceiving and interacting with the world 

are very different from our own. This resource aims to take you inside the minds of octopuses, squid, 

cuttlefish, and their lesser-known relatives, the nautiluses, using the latest scientific evidence to 

present an accurate, up-to-date picture of what we know about their capabilities.

Basics

The cephalopod molluscs (often called “cephalopods,” a term we will use throughout this 

resource) are a class of around 750 species, including all species of octopus, squid, cuttlefish, 

and nautilus. There are two currently existing subclasses of cephalopod: the nautiloids 

(Nautiloidae), which retain a hard external shell; and the coleoids (Coleoidea), soft-bodied 

cephalopods that have internalized or wholly lost the shell, including octopuses, cuttlefish, and 

squid. All present-day cephalopods are descended from hard-shelled ancestors. 

The soft-bodied cephalopods have evolved from a slow-moving ancestor to become fast-moving, 

voracious predators. They are renowned for their impressive cognitive abilities, many of which 
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are used while hunting. Because of their large brains and cognitive powers, the idea that they 

might be sentient beings, capable of feeling pain, pleasure, and other emotions, perhaps in their 

own distinctive forms, has been taken seriously by scientists for a long time. There is continuing 

uncertainty and debate about these questions, but also a very large amount of relevant evidence, 

most of it supportive of these ideas.

The cephalopods are separated from humans by at least 560 million years of evolution, and 

their brains are organized differently from vertebrate brains, and so the forms of cognition and 

sentience they have evolved are likely to be different from our own. Yet there are also striking 

parallels and convergences. When we compare the eyes of cephalopods to vertebrate eyes, we 

find an uncanny blend of convergently evolved similarities and striking differences, and the 

same is true of their mental capacities.

This annotated living bibliography provides a comprehensive overview of the peer-reviewed 

scientific evidence on questions of cognition and sentience. It is organized into 11 categories, 

introduced below.

Diversity of the Cephalopods

The cephalopods are a hugely diverse group of marine invertebrates. They are well known 

for fast movement, highly articulate arms and tentacles, rapid color-changing abilities, and 

advanced brains. These traits have enabled cephalopods to thrive in a broad range of habitats 

across the world’s marine ecosystems, from the deep sea and polar regions to shallow coastal 

environments and tropical reefs. We see immense variation in the forms and strategies 

cephalopods have evolved to meet the challenges of their environments. Read the full entry on 

diversity of the cephalopods.
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Perceiving the World

Cephalopods perceive the world by sensing light, contact, and chemicals in the environment. 

Whereas our eyes are sensitive to the wavelength of the light (leading to color vision), 

cephalopod eyes are sensitive to the orientation of the light, its polarization. They are very 

sensitive to pressure changes, allowing them to register sound waves despite lacking ears. The 

suckers on their arms are richly covered in chemosensing receptors, allowing them to “taste” the 

environment through contact. Read the full entry on perceiving the world.

Problem-Solving and Intelligence

Octopuses and cuttlefish, in particular, have earned their reputation for intelligence through a 

mixture of laboratory experiments and behaviors observed in the wild. Octopuses can manipulate 

their physical environment very skillfully, lifting up cylinders to access the prey within, and even 

unscrewing jars. They have many techniques for opening up bivalves and will select the most 

appropriate technique for the task at hand. Read the full entry on problem-solving and intelligence.

Learning and Memory

Given their reputation for intelligence, it can be a surprise to learn that cephalopods have quite 

short lifespans (for example, cuttlefish usually live around 1–2 years). Yet they learn a huge 

amount about the world around them in this time, and they use various different mechanisms to 

do it. They are proficient at many forms of associative learning, a broad type of learning in which 

connections between sensory stimuli, actions, and outcomes are learned. Cuttlefish also have 

advanced types of learning and memory once thought to be unique to large-brained vertebrates. 

For example, it seems they can remember the details of specific past events. Read the full entry 

on learning and memory.
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Sociality and Mating Strategies 

On the whole, cephalopods are not particularly social animals outside of the context of 

reproduction. However, their mating behaviors are complex and often require rapid decisions, 

subtle forms of communication (sometimes through skin color patterns), and the ability to 

remember past mates. Read the full entry on sociality and mating strategies.

Navigating the Environment

The soft-bodied cephalopods have a suite of adaptations that allow them to hunt prey with 

ruthless effectiveness—and to find safety before falling prey themselves to other predators. To 

achieve this, they use a variety of efficient strategies, taking full advantage of their advanced 

sensory abilities and an impressive capacity for learning and thinking about the spatial 

environment. To survive, they must locate and remember food sources, find their way back to 

shelter or home territories after tracing out complex foraging routes, and remember the location 

of other members of their species. Read the full entry on navigating the environment.

Self-Regulation and Self-Awareness

Cuttlefish have displayed remarkable feats of self-control in the form of delayed gratification, 

refraining from attacking an easy but low-quality prey item (sometimes for over two minutes) 

because they know a better one will emerge if they wait. The picture regarding self-awareness 

is a complicated one. Cephalopods clearly have ways of recognizing their arms as their own, but 

they have not, so far, been found to interact with mirrors in ways that would allow them to pass 

the famous “mirror-mark” test. Read the full entry on self-regulation and self-awareness.



CEPHALOPOD COGNITION AND SENTIENCE 14

Emotion

Cephalopods show clear signs of fear and stress when forced to endure unsuitable 

environments. But what about positive emotions? There is some evidence of “play-like” 

activities. While such actions might suggest experiences of curiosity or enjoyment, it’s 

important to acknowledge that our understanding of positive emotions in cephalopods is still 

at an early stage. Human emotion categories may not do a very good job of describing what is 

going on. Read the full entry on emotion.

Pain

There is very strong evidence of pain in octopuses, based on experiments that are regarded as 

standard ways of testing for pain in other animals. There is also substantial evidence in squid 

and cuttlefish. There is very little evidence one way or the other concerning nautiluses. Yet to err 

on the side of caution, we should assume that all cephalopods—not just octopuses—are capable 

of experiencing pain. Read the full entry on pain.

Key Welfare Needs

Caring for any cephalopod species requires a deep understanding of that species’ physiology, 

ecology, behavior, and cognition. Accumulating evidence in support of sentience in cephalopods 

have been leading to governmental and scientific initiatives to build better laws, regulations, and 

guidelines. In 2015, an international team of researchers developed guidelines for the care and 

welfare of cephalopods in research. This work provided useful recommendations about practices 

related to the capture, transport, welfare monitoring, anesthesia, euthanasia, and husbandry of 

cephalopods. Read the full entry on key welfare needs.
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Knowledge Gaps

There is much that is still unknown about the cephalopods—and many areas where new evidence 

would be incredibly valuable. Some major knowledge gaps concern questions such as: Why did 

cephalopods evolve such high levels of intelligence? What are the brain mechanisms supporting 

their most impressive behaviors? How are their minds shaped by their sensory abilities? What 

anesthetics and pain medications work on cephalopods? What positive emotions are they capable 

of experiencing? How can their nutritional needs be best met when they are kept in captivity? 

How can they be effectively protected from disease? Read the full entry on knowledge gaps.
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CHAPTER 1

Diversity of the 
Cephalopods
The cephalopods (Class: Cephalopoda) are a hugely diverse group of marine invertebrates. 

Uniquely among molluscs, they have adapted quick forms of locomotion,[1] highly articulate 

and semi-autonomous arms and tentacles that enable them to grab and manipulate objects,[2] 

closed circulatory systems that provide efficient oxygen transport and the capacity for higher 

metabolisms,[3] rapid color-changing abilities that facilitate camouflage and communication,[4] 

and advanced brains that allow for sophisticated learning and intricate behaviors.[5] Together, 

these traits have enabled cephalopods to occupy a broad range of ecological niches and habitats 

across the world’s marine ecosystems, from the deep sea and polar regions to shallow coastal 

environments and tropical reefs.[6],[7],[8]  

There are over 800 described species of cephalopods, diverse in size and body plans. For a 

long time, this diversity —combined with cephalopods’ ability to alter their shape, color, and 

texture—made it very difficult indeed to construct reliable family trees of the relationships among 

cephalopod species.[9] Fortunately, molecular methods have allowed a much better understanding 

of the cephalopods’ evolutionary history.[9],[10] Modern science recognizes ten extant (that is, 

currently living) cephalopod orders, related to each other in the way depicted in Figure 1. 



CEPHALOPOD COGNITION AND SENTIENCE 17

FIGURE 1.  The evolutionary relationships of the ten living cephalopod orders. 

Branch lengths are not to scale (i.e. they do not represent evolutionary time).
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The Nautiloids

The nautiloids are the oldest cephalopod lineage, and the only group to retain the ancestral 

trait of possessing an external shell.[11] They first appeared in the fossil record during the upper 

Cambrian period (approximately 500 million years ago).[12] There were once many more species 

than now exist. Modern nautiloids are only represented by nine currently described species.[6],[13] 

The living nautiloids belong to the order Nautilida and are informally called nautilids.

Nautilids are different to all other living cephalopods in their morphology, life history, and 

behavior. Living nautilids have a coiled, chambered external shell that helps them with 
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buoyancy regulation and protection against predators. They also have more than 90 tentacles 

that they use for feeding and mating[11] (Figure 2). In the wild, they live in the “coral triangle” 

region of the Indian and Pacific Oceans. They can live to depths of 700 m or more, and often 

migrate to shallower waters nocturnally to forage and hunt for food.[14] Nautilids can live for 

more than twenty years and have been observed to breed annually once mature.[15]

The Coleoids

Most currently living cephalopod species are coleoid, or soft-bodied, cephalopods. The coleoids 

have internalized and reduced—or completely lost—the ancestral shell. In doing this, coleioid 

cephalopods have become faster and more flexible[1] but have needed to rely on specialized 

behavioral strategies to avoid predation.[2]

FIGURE 2.  

Chambered nautilus (Nautilus 

pompilius, order Nautilida).
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OPEN-EYE SQUIDS

The oegopsids, or open-eye squids, are a large order containing at least 230 species.[9] As the 

common name suggests, oegopsids lack corneal coverings over their eyes. Further traits that 

distinguish them from other squids are paired female oviducts, a lack of tentacle pockets, and, 

in many species, the presence of hooks on their arm and tentacle clubs.[7] Oegopsids range 

across the all ocean basins.[7] This order contains the two largest cephalopods in the world, 

the giant squid (Architeuthis dux: around 13 m total length, Figure 3) and colossal squid 

(Mesonychoteuthis hamiltoni: around 14 m total length).

FIGURE 3.  

Giant squid (Architeuthis 

dux, order Oegopsida).
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DEEP-SEA SQUIDS

The bathyteuthids, or deep-sea squids, are similar to the oegopsids in overall appearance but 

possess tentacle pockets[16] (Figure 4). All described species live deep in the sea, between 200 

m and 4,000 m depth.[7] Due to their habitat, observations of these squid in the wild are rare. 

However, maternal care in the form of brooding an egg-sheet in mid-water has been observed 

for one species, Bathyteuthis berryi.[17]

THE RAM’S HORN SQUID

Spirulida is an order containing just one species, Spirula spirula, otherwise known as the 

ram’s horn squid for its spiral-shaped internal shell, which it uses for regulating buoyancy 

(Figure 5). This small squid (up to 45 mm) inhabits deep waters (100–1,750 m) along tropical 

and subtropical continental shelves and oceanic islands.[6] Spirula spirula are thought to live 

between 18 and 20 months, and it has been suggested that females might lay eggs at the bottom 

of continental slopes.[6] This species also has a green photophore, or light-emitting organ, at the 

FIGURE 4.  

Deep-sea squid (Bathyteuthis 

berryi, order Bathyteuthida).
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FIGURE 6.  

Below, tropical pygmy squid  

(Idiosepius pygmaeus, order Idiosepiida).

FIGURE 5.  

Above, ram’s horn squid  

(Spirula spirula, order Spirulida).

tip of the mantle, which offers camouflage 

from predators by a method called “counter-

illumination”—producing light to cancel out 

one’s shadow when viewed from below.[18]

PYGMY SQUIDS

The idiosepiids, or pygmy squids, are the 

world’s smallest cephalopods, reaching a 

maximum of only 21 mm in mantle length[6] 

(Figure 6). There are currently eight described 

species.[19] They live within shallow-water, 

coastal environments within the Indo-west 

Pacific.[6] Idiosepiids typically live in seagrass 

and mangrove habitats, where they use an 

oval adhesive organ to adhere to blades of 

seagrass or seaweed.[20] Depending on species, 

idiosepiids live for only 80–150 days, and 

spawn continuously once mature.[21]  

CLOSED-EYE SQUIDS

The myopsids, or closed-eye squids, are a 

relatively well-studied and commercially 

important order of squids, due to their 

worldwide distribution across coastal waters.[7] 

There are approximately fifty species, and 

they differ from other squid groups principally 

in that they have a transparent corneal 
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membrane over their eyes. They possess tentacle pockets and their suckers lack hooks[7] (Figure 7). 

The largest myopsid, Loligo forbesii, can reach a length of 937 mm.[7] They are considered the 

most social of the cephalopod orders, since all myopsids hunt and breed in shoals.[22] Depending 

on the species, myopsids will live for one to two years[23] and die after a single breeding season.[24]  

DUMPLING SQUIDS

The sepiolids, or dumpling squids, are a group of small (10–80 mm mantle length) round-

shaped squids lacking any form of bone or internalized shell.[6] There are currently 73 described 

species of sepiolid, split among the two families: Sepiolidae (Figure 8), or bobtail squid; and 

Sepiadariidae (Figure 9), or bottletail squid.[25] There is currently some debate around whether 

the sepiolids should be a suborder (Sepiolina) within the larger Sepiida order.[26]  

FIGURE 7.  

Southern reef squid (Sepioteuthis 

australis, order Myopsida).
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FIGURE 8.  

Above, southern bobtail squid (Euprymna 

tasmanica; order Sepiolida, Sepiolidae family).  

Sepiolids are found across all oceans.[25] 

Each of the sepiolid families has unique anti-

predator strategies. The bobtail squids use 

symbiosis with bacterial species to create 

counter-illumination camouflage, and in some 

cases they distract predators by discharging 

luminous secretions.[27],[28] The bottletail squids 

are able to secrete a toxic slime to ward off 

predators.[29] In recent years, several members 

of the Sepiolida have become model organisms 

for cephalopod research, owing to their simple 

culture and husbandry requirements under 

laboratory conditions.[30],[25]

CUTTLEFISH

The sepiids, or cuttlefish, are a group of 

approximately 120 species ranging across the 

world’s tropical and temperate coastal regions 

except for the Americas[6] (Figure 10).  

Cuttlefish are known for their unique 

internalized shell, or cuttlebone, that they 

use for buoyancy regulation.[6] Most cuttlefish 

species live up to two years and spawn 

intermittently.[31],[32] 

Due to their unique anatomy, behavior, 

commercial importance, and coastal 

FIGURE 9.  

Below, striped pyjama squid (Sepioloidea 

lineolata; order Sepiolida, Sepidariidae family).
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abundance, cuttlefish have been the model species for a vast amount of cephalopod research. 

Much of this research has been focused on their advanced visual systems,[33] camouflage,[34] 

communication,[35] learning,[36] memory,[37] and reproductive behaviors.[38] Cuttlefish have 

consistently astounded researchers with their apparently sophisticated levels of cognition and 

the complexity of their behavior.

THE VAMPIRE SQUID

The order Vampyromorphida contains a single living species, the vampire squid (Vampyroteuthis 

infernalis, Figure 11). As shown in Figure 1, this species is thought to be closer in evolutionary terms 

to the octopods (below) than to the other squids (above). The vampire squid has two long retractable 

filaments between the first two pairs of arms that are used in feeding.[39] These filaments are 

similar in nature to the feeding tentacles of other squids but have different evolutionary origins.[40]  

Vampire squid are found at depths of 500–3,000 m within tropical to subtropical regions.[8] Their 

eight arms are connected by a dark webbing, and their arms are lined with fleshy, spine-like cirri. 

FIGURE 10.  

Australian giant cuttlefish 

(Sepia apama, order Sepiida).
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FIGURE 11.  

Vampire squid (Vampyroteuthis 

infernalis, order Vampyroteuthida). 

Adult vampire squids have lateral fins on either side of the mantle to aid in swimming.[41] 

They are covered almost entirely in light-emitting photophores[42] and can produce a viscous, 

luminous fluid from their arm tips.[43] These light-tricks are thought to help vampire squids 

disorient and escape from potential deep-sea predators.[43] Due to the inaccessibility of their 

habitats, sightings are rare, and much of what we know of vampire squids’ biology is limited to 

observations made from dead specimens. 

OCTOPODS

Octopods are the largest cephalopod order, represented by more than 300 described species.[9] 

They can be further categorized into two suborders: the Cirrata (Figure 12), or deep-sea cirrate 

octopods; and the Incirrata (Figure 13), or incirrate octopods, which are better studied. 

Cirrate octopods are named for the pairs of cirri that line each of their suckers. They are easily 

differentiated from incirrate octopods by their paired swimming fins on either side of the 

mantle. These muscular fins are supported by a well-developed, cartilage-like internal shell, 
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absent in other Octopodiformes.[44] Cirrate 

octopods typically live at depths greater 

than 300 m but can live in shallower 

waters closer to the polar regions.[45] 

Incirrate octopods are found across 

the globe[8] and are subdivided further 

into two superfamilies. Members of the 

superfamily Argonautoidea have a unique 

reproductive trait in which males remove a 

specialized mating arm to offer to females 

for sperm transfer during mating.[46] The 

other superfamily, Octopodoidea, contains 

the famed shallow-water, coastal species of  

the Octopodidae family (octopuses)[47] 

that have been the focus of much 

cephalopod research. 

Octopuses have fast-growth rates,[48] short 

life-cycles,[49] and in most cases breed 

once and then die.[24] They combine these 

traits with elaborate hunting strategies[50] 

and noted capacities for problem 

solving[51] and memory[52] (see “Problem 

Solving and Intelligence,” “Learning and 

Memory”). Like the cuttlefish, they feature 

heavily in other parts of this guide.

FIGURE 12.  

Flapjack octopus (Opisthoteuthis agassizii; 

order Octopoda, suborder Cirrata). 
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FIGURE 13.  

Common octopus (Octopus vulgaris; 

order Octopoda, suborder Incirrata)

CONCLUSION

Despite the rich biodiversity of cephalopod taxa, the majority of cephalopod research has 

been limited to shallow-water, coastal species that are active in daylight. This bias in research 

towards more accessible species has constrained our knowledge of cephalopod biology and 

behavior to only a small subset of cephalopod species, concentrated within about half of the 

cephalopod orders. Current understanding of behavior or cognition is extremely lacking for 

deep-sea cephalopods. Whenever they are studied, cephalopods have captivated and astonished 

their observers with unique behavioral adaptations—strategies that have enabled this class of 

invertebrates to flourish and radiate across the world’s oceans.
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CHAPTER 2

Perceiving the World
Cephalopods possess a range of advanced sensory abilities to perceive the world around them. 

These abilities help them seek out prey, elude predators, and handle interactions with members 

of the same species. The sensory systems of cephalopods can be broadly differentiated into 

the three categories: photosensory (sensing light), mechanosensory (sensing contact), and 

chemosensory (sensing the chemical environment).[1] The structures involved vary somewhat 

across different cephalopod species. However, all cephalopods rely on light, together with 

mechanical and chemical stimulation, to navigate and interact with their surroundings.

Let’s start with the photosensory (light-sensing) systems. Octopuses, cuttlefish, and squid 

have advanced “camera-type” eyes that evolved independently of the eyes of vertebrates (a 

prime example of convergent evolution). These include an iris controlling the amount of light 

entering the pupil, a refractive lens, a vitreous cavity, a layer of photoreceptors forming a 

retina,[2] and, in octopuses, a fully closed cornea over the lens.[3] These eyes can form perfectly 

focused images.[4] Unlike human eyes, they have multiple focal points, allowing enhanced 

perception of moving subjects.[5] This sharp eyesight helps them with hunting,[6] the detection 

and identification of predators,[7] camouflaging with their environment,[8] visual signaling,[9] and 

recognition of other members of the same species.[10] By contrast, the nautiloids (cephalopods 

that retain the hard shell of ancestral forms) have “pinhole” eyes lacking a cornea or refractive 

lens.[11] They are thought to only perceive very dim, unfocused images. 
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Most cephalopods are thought unable to differentiate among the different wavelengths of light 

with their eyes, an ability necessary to perceive colors. This is because they only possess a single 

type of photoreceptor, in contrast to the various different types, keyed to different wavelengths, 

found in the eyes of animals that see in color.[12] They have also failed several forms of color 

discrimination test.[13] The firefly squid (Watasenia scintillans) is the only cephalopod known 

to have three photoreceptor pigments.[14] This may have evolved to help the squid distinguish 

between ambient light and the bioluminescence of other members of the same species.[15] We 

cannot entirely rule out something like color vision existing in other cephalopods. It is possible 

in principle that other cephalopods could distinguish between different wavelengths of light 

with a single type of photoreceptor, if they use sophisticated enough processing strategies on the 

information from these photoreceptors.[16] 

Cephalopod eyes are sensitive to the polarization of light (roughly, the orientation of the light 

waves, a property distinct from their wavelength). This polarization-sensitivity is thought to be 

especially useful in deep-water environments. With increasing depth, light becomes less variable 

in its wavelength (everything quickly becomes bluish, gradually reducing contrast), whereas 

contrasts in polarization are unaffected by the depth of the water.[17] Cephalopods probably 

use this sense for navigation, and for locating fish and crustacean prey items that have highly 

polarized scales and exoskeletons, respectively.[17] Soft-bodied cephalopods are also capable of 

changing the polarized patterns of light reflected from their skin.[18] This may provide them with 

a discreet way of communicating with other members of the same species.[19] While evidence to 

support this idea is still limited, one female of the species Octopus djinda has been reported to 

display polarized patterns to a male in the laboratory.[20] Cephalopods can also sense light with 

their skin.[21],[22] It is thought that this ability helps them maintain optimal camouflage, as well as 

ensuring that their bodies are not exposed to visual predators when hiding or resting in a den.[23]
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Let’s turn now to the mechanosensory (contact-sensing) systems. Cephalopods can 

feel the texture, movement, and sound of objects around them. A variety of specialized 

mechanoreceptors are present in the suckers, lining the arms of soft-bodied cephalopods. These 

are capable of detecting texture and thought to help facilitate the handling of prey, as well as 

potentially playing a role during mating behavior. The cilia lining the tentacles of nautiloids are 

thought to serve similar functions.[24] Cuttlefish, squid, and some octopus hatchlings also possess 

a lateral line system, composed of four or five lines of epidermal hair cells that can detect very 

slight water movements.[25] They use this for detecting and ambushing prey, and it may also help 

with predator avoidance and shoaling behavior.

Squid, being active swimmers, have a neck receptor organ that is used for detecting the pitch 

and roll of the head relative to their bodies.[26] All cephalopods possess organs called statocysts 

that aid with equilibrium and orientation in the water column by detecting gravity and angular 

acceleration.[27] There is some evidence that cephalopod statocysts, and potentially their 

lateral line systems too, are sensitive to sound waves. Various sounds have been observed to 

elicit startle or escape behavior in cephalopods,[28] despite their lack of ears, leading to the 

suggestion that cephalopods in the wild might use this ability to evade potential predators.[29] 

There is also evidence that noise in the environment, caused by humans, can reduce auditory 

sensitivity in some species.[30]

Finally, let’s turn to the chemosensory (chemical-sensing) systems. Nautiloids, which have poor 

vision, rely heavily on sensing the chemical environment to locate food while scavenging and 

hunting.[24] Similarly, soft-bodied cephalopods can taste waterborne molecules from a distance 

using chemoreceptive pits located below their eyes.[31] This helps them to hunt prey,[32] detect 

predators,[33] and gain valuable information about other animals of the same species.[34] The 

common cuttlefish (Sepia officinalis) has been observed to keep track of the recent mating 

history of potential partners using distance chemoreception.[35],[36] This is useful for females when 
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choosing a mate, and useful for males when trying to guard a mate. Certain octopus species can 

discriminate the sex of other members of their species based on chemical signals in the water, 

and in some cases these same signals have been observed to influence female mate choice.[37]

Cephalopods can “taste” their environment through contact.[38] Nautiloids have contact 

chemoreceptors on their tentacles, and soft-bodied cephalopods have chemoreceptors on the 

suckers lining the ventral surfaces of their arms, as well as on the buccal lips (around the mouth) 

in cuttlefish and squid. Octopuses have approximately 10,000 chemoreceptor cells per sucker, 

compared to only around 100 chemoreceptors per sucker in cuttlefish and squid.[39],[40] It would 

seem the way octopuses explore their environment with their arms while foraging for food requires 

a very high density of chemoreceptors. This ability also aids cephalopods in the acquisition and 

handling of prey, and, in octopuses, clearly plays a prominent role in how they interact with each 

other.[41] In the brain of an octopus, the chemosensory lobes, which are responsible for processing 

chemical stimuli, are integrated with the parts of the brain that regulate signaling in the context 

of feeding and reproduction.[28] Male blue-ringed octopuses (Hapalochlaena maculosa) use 

chemotactile behavior to identify the sex of other animals of the same species, as well as to 

determine whether they had already mated or not with a particular female.[42]

Taken together, these impressive sensory abilities allow cephalopods to occupy diverse marine 

environments, succeed as active marine predators, employ sophisticated predator avoidance 

strategies and partake in complex reproductive behaviors.[43]
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CHAPTER 3

Problem-Solving and 
Intelligence
Problem-solving includes both “the use of novel means to reach a goal when direct means 

are unavailable”[1] and “the ability to overcome obstacles and achieve a goal”.[2] It takes many 

different forms in different animals. It can serve many different purposes too, although many 

of these purposes have some connection to finding and processing food. Some of the most 

famous examples involve tool use. Chimpanzees[3] and capuchin monkeys[4] use stones to crack 

nuts, while New Caledonian crows used hooked sticks to extract insects from crevices.[5] But 

invertebrates solve problems too: think, for example, of leafcutter ants, which overcome many 

kinds of physical barriers when transporting leaf fragments back to their nests.[6] 

Although problem-solving is often regarded as a hallmark of intelligence, the link is not 

straightforward. When an animal solves a problem, it will not always be because they have 

understood its structure and come up with a novel, creative solution. Animals often face similar 

problems over and over again in their lifetimes, and these problems also recur over generations, 

allowing both learning and evolution to shape solutions without the animal having to 

comprehend what is going on.[7],[8] Research in primates and birds has tried to pin down the role 

of understanding and insight by presenting animals with tasks neither they nor their ancestors 

will have previously encountered in the wild. These tasks usually require the animals to retrieve 

a bait that is not directly accessible, because it is either placed at a distance (requiring a tool to 
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reach it) or else hidden inside a puzzle box which must first be opened.[1],[9],[10],[11] Of course, while 

these exact puzzles would never be encountered in the wild, relevantly similar puzzles might be, 

leading to frequent debate about whether animals are really coming up with innovative, new 

solutions or using evolved behavioral strategies.

Do cephalopods have problem-solving abilities? Several lines of evidence indicate that octopuses 

can solve an impressive range of problems. Octopuses exhibit remarkable skill in feeding 

on bivalves and other shelled prey. They use their suckered arms to pull open the valves or, 

alternatively, employ their chitinous beak to drill holes through the shell and inject paralyzing 

toxins into the prey.[12],[13],[14],[15] Importantly, octopuses appear to select the most effective 

strategy according to the size and species of the prey, showing cognitive flexibility.[13],[16] When 

they opt to drill holes, the holes are not just drilled at random spots on the shell. Instead, the 

location of drilling varies depending on the shape of the shell, often matching the position of the 

adductor muscles or the heart to optimize the effects of the toxins.[17],[18]

Do octopuses ever use tools to open bivalves? In 1857, a naturalist reported observing common 

octopuses (Octopus vulgaris) placing a pebble in between the two valves of a large clam (Pinna 

nobilis) to prevent the closure of the shell and gain access to the prey.[19] Tantalizingly, this 

behavior has never been conclusively demonstrated. However, octopuses are known to use tools 

for defense. They have been documented using stones to barricade the entrance of a shelter[20] 

and using coconut shells to create a portable den that can be disassembled and assembled 

as required.[21] Octopuses, squid, and cuttlefish all squirt water jets from their funnel to aid 

burrowing in the sand or to move away food debris, using these jets of water as a tool.[        22] 

Octopuses also exhibit problem-solving abilities also when confronted with artificial tasks. As 

long ago as 1911, it was shown that common octopuses can lift a clear cylinder to retrieve baits 

placed inside.[23],[24] Follow-up experiments demonstrated that octopuses can remove plugs from 
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jars and use a variety of strategies, including pulling and unscrewing lids, to acquire hidden 

food rewards.[25],[26],[27],[28] Typically, octopuses solve these puzzles through the concerted action 

of their arms and suckers, without visual access to the apparatus or the prey when it is being 

manipulated. This behavior resembles the so-called “speculative pounce” seen in the wild, a 

foraging strategy whereby the octopus envelops a large rock and blindly explores its crevices, 

using chemical and tactile information acquired through the suckers to locate prey.[29] Yet 

octopuses can use vision to guide their puzzle-solving too, where appropriate. With precise, 

visually-guided movements of a single arm, they are able to reach a goal in a three-choice 

maze[30] and to ambush shrimps.[31]

What mechanisms are behind these impressive displays of problem solving?. The similarities 

between the “speculative pounce” and the way octopuses approach problem-solving tasks in 

the lab suggest that hardwired behavioral adaptations may be part of the story.[32] However, 

their performance often improves progressively over trials (e.g., they open jars more quickly 

after repeated encounters), indicating that learning is also involved.[25] In support of this 

idea, there is evidence that scopolamine (a substance known to affect short-term memory) 

transiently impairs the ability to open jars in trained octopuses, and does so without affecting 

their predatory responses.[33] 

In addition to learning and instinct, though, there is probably also some role for understanding 

and insight. A 2016 experiment tested whether common octopuses could retrieve a L-shaped 

food container placed behind a plastic wall through a small hole. Success required rotating the 

L-shaped object at just the right moment. The researchers found that the octopuses’ not only 

performed well at the original task, but also adapted very quickly to new variations, such as a 

change in the orientation of the object. This level of flexibility could not be explained by fixed 

strategies or by simple learning mechanisms, the researchers argued. It could only be explained 

by understanding the physical requirements of the task.[34]
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Yet more evidence of problem-solving in cephalopods comes from “detour” experiments, which 

investigate the animals’ ability to overcome physical barriers to reach a goal. For instance, a 

2017 study allowed cuttlefish (Sepia gibba and Sepia officinalis) to learn the position of a shelter 

within their tank. The researchers then added rock barriers to block the direct path to the shelter. 

They found that animals could perform both horizontal and vertical detours to reach the goal.[35] 

Reports from the wild provide further evidence of an ability to plan detours around obstacles. For 

instance, divers have observed a cuttlefish (S. officinalis) swimming vertically over a 3 m wall and 

moving straight towards a small crevice behind the wall to hide.[36] The direct path taken, plus the 

apparent lack of any hesitation, suggested the animal was returning to a familiar location via a 

pre-planned route. Octopuses have been seen performing similar feats.[37],[38] In the lab, octopuses 

have performed well in detour tasks using food, rather than a shelter, as a goal.[39],[40],[41],[42],[43] For 

more on the navigation abilities of cephalopods, see “Navigating the Environment.”

 In sum, cephalopods can solve various physical problems. The evidence available is largely 

based on the common octopus and a few other species. In the future, the testing of currently 

overlooked species, including squids and nautiluses, may allow a richer picture of problem-

solving in cephalopods.[44] 
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CHAPTER 4

Learning and Memory
Octopuses, cuttlefish, and squid (known collectively as the soft-bodied cephalopods or coleoid 

cephalopods) have areas of their brain dedicated to learning and memory.[1] Their brains are 

organized profoundly differently from those of vertebrates—they are donut-shaped, forming a 

ring around the esophagus. They show us that many of the learning and memory abilities found 

in mammals can also be achieved by a very different brain. By contrast, the nautiloids (which 

have shells, and so look quite different from soft-bodied cephalopods) possess relatively simple 

brains, traditionally thought to lack any obvious regions dedicated to learning and memory.[2] Yet 

they too are still able to succeed in some learning and memory tasks. The learning and memory 

abilities of cephalopods can broadly be sorted into three categories: “non-associative” (relatively 

simple), “associative” (associating some things with others), and “temporal” (related to time). 

Simple Non-Associative Learning

Two of the simplest kinds of learning are sensitization and habituation. They are called “non-

associative” because they do not involve associating one sensory stimulus with another or 

with an outcome. Sensitization occurs when repeated exposure to the same stimulus results 

in the animal becoming more sensitive to that stimulus, as shown by progressively amplified 

responses. Habituation, by contrast, occurs when repeated exposure to a stimulus results in 

the animal becoming less sensitive to that stimulus, as shown by a progressively depressed 

response. Cephalopods display both sensitization and habituation in different contexts.  
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Squid display what is known as nociceptive sensitization: after a minor injury, squid become 

much more sensitive to touch.[3] The entire body appears sensitized, with the effect lasting at 

least 24 hours. This is a sign that they might feel something akin to pain, a possibility discussed 

in much greater detail in the entry on Pain. Meanwhile, after repeated exposure, octopuses 

habituate to visual stimuli,[4],[5],[6] cuttlefish habituate to sounds,[7] squid habituate to the 

presence of a false predator,[8] and nautiloids habituate to unfamiliar environments.[9] 

Associative Learning

Octopuses, squid, and cuttlefish can rapidly learn to associate a stimulus with a positive 

or negative outcome.[10],[11],[12],[13],[14] When learning about visual stimuli, they can make fine 

discriminations between visual features, taking account of shape, size, brightness, and orientation 

(Figure 14).[15],[16],[17],[18],[19],[20] Octopuses can even learn to distinguish between objects differing 

in their texture-taste combination (an ability known as “chemotactile” discrimination).[21],[22],[23] 

Octopuses and cuttlefish can also reverse a previously learned association: they can learn that a 

stimulus that used to predict a reward now predicts punishment, and vice versa.[24],[25],[26],[27],[28] 

One particular experimental design, the “prawn-in-the-tube” test, has revealed intricate details 

about how associations are made during associative learning tasks.[14],[29],[30] In this experimental 

set-up, cuttlefish are presented with a prawn in a glass tube. Through a blend of tactile and visual 

sensory cues, they learn that the prey is inaccessible due to the glass barrier (Figure 15). 

Cephalopods are also capable of learning about spatial features of their environment, such as 

the locations of dens and other important objects. For example, cuttlefish can locate shelter 

within a maze.[31] To find their way around, they sometimes use the orientation of polarized light 

and sometimes use information about landmarks.[30] When one source of information becomes 

unavailable, they can switch to using the other. Meanwhile, octopuses can return directly to 

their den after a meandering foraging trip.[32],[33],[34]
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Like us, cephalopods possess both short- and long-term memory. The nature of these memory 

abilities varies between cephalopod species. Octopuses and cuttlefish can remember learned 

information for weeks[33] and bobtail squids have stable long-term memory that lasts at least 12 

days,[13] whereas nautiluses do not appear to retain information beyond 24 hours.[35]

Learning about Time

In temporal forms of learning and memory, an animal must keep track of time and update their 

decision-making with new information about what happened, where, and when.[36] Keeping 

track of time is vital for some cognitively advanced animals to flexibly adjust their foraging 

behavior, especially when storing food that can decay or hunting prey that becomes available at 

different rates.[37] The distinction between associative and temporal learning is not a sharp one, 

since the latter will usually involve an element of the former. However, animals go significantly 

FIGURE 14.  Illustration of a discrimination task in which an octopus needs 

to learn to distinguish between two different shapes, a circle and a triangle. 
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beyond associative learning when they are able to recall the detail of a specific, one-off event 

in their past (such as a specific encounter with a predator, prey animal, or family member) and 

flexibly make use of that detail to decide what to do in a relevantly similar situation.

For most humans, the ability to remember the fine detail of specific past events (often known 

as episodic memory) involves conscious experience: we re-experience the sights and sounds of 

past moments in a sort of “mind’s eye,” where we can recall how things seemed from our point 

of view at the time in question. In the literature on human psychology, this is sometimes called 

“autonoetic awareness.” Part of the experience is that the event feels like it happened in our past, 

an elusive feeling called “chronesthesia.”[38]

Cuttlefish have been shown to recollect information about the “what, where, and when” of 

personally experienced events.[39] When looking for prey, they can alter their search strategies 

FIGURE 15.  Illustration of the prawn-in-the-tube test in which a cuttlefish is presented 

with live shrimp inside a glass tube and must learn to inhibit predatory behavior. 
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depending on what they had previously eaten, where their previous meal had been sourced, and 

when they last ate (i.e., how much time has passed since their previous meal). In non-human 

animals, this is often termed “episodic-like memory” because the evidence does not conclusively 

establish that the kinds of conscious experience involved in human episodic memory are present. 

We don’t know whether cuttlefish have autonoetic awareness or feel a sense of chronesthesia.

Cuttlefish are also able to retrieve information about the sensory source of an episodic-like 

memory—a capacity referred to as source memory. For instance, they make different choices 

depending on whether they have seen or smelled the prey item.[40],[41] Unlike in humans and 

other mammals, the cuttlefish equivalent of episodic memory does not deteriorate with age 

(though their lifespans are much shorter than ours, usually 1–2 years). Elderly cuttlefish are 

still able to recall spatial and temporal information to guide their foraging behavior, and this 

continues until the final weeks of their lives.[42]

Cuttlefish have demonstrated some capacity to plan for the future. They can use predictions 

about the future availability of their preferred prey (i.e., shrimp) to guide their foraging 

behavior.[40] They reduce their consumption of crabs, their less preferred prey, during the day 

when they predict shrimp will be available at night. 

They can also delay gratification, something even humans often find very difficult. When deciding 

whether a preferred prey item is worth waiting for, cuttlefish will take account of the expected 

length of the wait (Figure 16).[43] Some animals were able to wait up to 130 seconds, refraining from 

taking from an immediate but less desirable prey item right in front of them. These wait times are 

comparable to those observed in apes,[44] parrots,[45] and corvids.[46] Furthermore, cuttlefish can 

flexibly adjust their self-control behavior in response to changing conditions. When the preferred 

prey is visible but never obtainable, cuttlefish give up waiting and consume the less preferred 

prey item almost immediately.[43] For more detail, see “Self-Regulation and Self-Awareness.”
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There is some evidence that octopuses in the wild remember where they have recently been, and 

make use of that information. They avoid visiting areas where they recently foraged, presumably 

having memorized where and when they previously foraged to avoid areas depleted of food.[31],[34]  

Yet, when presented with an episodic-like memory task, octopuses behave differently from 

cuttlefish, approaching the task in a different way. They appear to link learned information to 

the order in which different events occurred, attaching more significance to the order of events 

than to elapsed time intervals.[47]

In short, cephalopods can learn through non-associative, associative, and temporal avenues 

and possess both short- and long-term memory. Cuttlefish have advanced types of learning and 

memory once thought to be unique to large-brained vertebrates, and not yet demonstrated in any 

other invertebrate: episodic-like memory, source memory,[41] and advanced delayed gratification.

FIGURE 16.  Illustration of a delayed gratification task in which a cuttlefish must choose between 

a less preferred reward—a cooked prawn —available immediately (circle chamber), or wait for a 

more preferred reward —a live shrimp —available after a time delay (triangle chamber). 
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CHAPTER 5

Sociality and Mating 
Strategies
Large brains and flexible, intelligent behavior are often thought to be linked to sociality. Yet 

cephalopods appear to be an exception: for all their well-known intelligence, they are largely 

non-social. In fact, the capacity for sociality varies among the cephalopods.[1] Some squid 

species hunt in large shoals,[2] and cuttlefish assemble in large groups at certain times of the 

year for spawning events.[3] Nonetheless, most octopus species, as well as most deep-water 

cephalopods such as nautiluses and vampire squid, are presumed to spend most of their 

lives living in a solitary manner.[4] They have even been described as “antisocial.”[5] Nearly all 

examples of sociality observed in the cephalopods occur in the context of resource competition 

and reproductive behavior.

Squid are the most social of cephalopods, in so far as they spend a significant portion of their 

lives in close proximity with one another in large shoals.[2] In addition to making it easier to find 

a mate,[6] shoaling behavior can help squid avoid predation by both increasing their chances 

of detecting a predator[7] and by spreading out the chance of getting caught across many shoal 

members.[8] It has even been suggested that the coral reef squid (Sepioteuthis sepioidea) may 

exhibit “sentinel” behavior, with one member swimming on the edge of the group to provide an 

early warning to the rest of the shoal in the case of a nearby predator.[9]
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Even though individual squid hunt while in shoals, there is no evidence of coordinated hunting 

among squid. The only definitive case of collaborative hunting in any cephalopod involves 

collaborations between the big blue octopus, also known as the day octopus (Octopus cyanea), 

and several species of reef fishes. Although either the octopus or the fish can initiate the hunt, 

the octopuses then coordinate it, using changes to their posture and patterns of movement to 

cue responses from their hunting partners, who guard the escape routes from a section of reef 

while the octopus reaches in with their arms to extract the prey.[10] 

Male-against-male competition over access to females is present in nearly all studied 

cephalopods.[11] Other forms of competition between members of the same species have been 

observed in octopuses. Being mostly confined to the seafloor, octopuses make dens to help 

them avoid predators. It seems likely that, in at least some octopus species, there is competition 

over access to good den sites.[12] In most cases, octopuses choose dens further away from other 

octopuses, all else being equal.[5],[13] However, it can sometimes be the case that the only suitable 

den spaces in the area are all concentrated in a small space.[14] Sometimes, this seems to lead 

to a degree of social tolerance. Octopuses probably use various strategies to avoid unnecessary 

aggression from other octopuses. These strategies include respecting dominance hierarchies[15] 

and signaling intentions using skin color patterns.[16] In some species, males may choose dens 

adjacent to particularly favoured females.[14] In the larger Pacific striped octopus, male-female 

pairs have been observed to cohabit in the same den and even share food.[17]

The most intricate examples of sociality observed in cephalopods center on mating behavior. 

Male octopuses,[18] cuttlefish,[3] and squid[19],[20] have all been observed to employ mating 

strategies that vary with body size. In cuttlefish and squid species, larger males compete 

vigorously with each other via intense displays of skin color patterns,[3] fin beating,[6] and biting[3] 

to gain access to females. The winning males monopolize the females and try to mate guard 

them from other males. The smaller males, by contrast, attempt to “sneak” copulations with the 
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guarded females, sometimes utilizing female-specific skin color patterns to slip past the guards 

undetected (a behavior known as sexual mimicry).[6] Meanwhile, in the algae octopus (Abdopus 

aculeatus), a species in which reproductive adults live in close proximity to each other, larger 

males choose dens adjacent to large females so that they can guard them from mating with other 

males.[21] In this species too, smaller males will often use female “solicitation” displays to sneak 

past the larger males and copulate with guarded females.[18]

Despite the prevalence of dramatic male visual displays in cephalopod mating behavior, the 

responses of females are usually far more subtle, if they respond at all, leaving the role of visual 

signaling in cephalopod courtship quite unclear.[11] These visual signals might help females to 

recognize the sex or species of males,[22] and they may also signal intent. Female rejection of male 

copulation attempts are rare among squids but common in both cuttlefish[23] and octopuses.[24] 

In most cases, it is uncertain which male traits influence female receptivity. However, growing 

evidence strongly suggests that processes after copulation, especially sperm competition and 

cryptic female choice (that is, processes in the female that alter the chances of fertilization, 

depending on the male), have a large effect on reproductive outcomes in cephalopods.[11]

An important component of all social behavior of cephalopods is social recognition. This is the 

capacity of individuals in a species to recognize other members of the same species. This may 

take the form of recognizing them as individuals or placing them in a relevant category (such 

as female, dominant, etc.). The extent of social recognition, and the mechanisms enabling it, 

vary substantially among cephalopods.[22] While visual cues are likely to aid many cephalopods 

in assessing the sex or dominance of another octopus, only one species (the common octopus, 

Octopus vulgaris) has so far been shown to recognize individuals by sight.[25] On the whole, 

cephalopods appear to rely heavily on chemosensing for social recognition (on chemosensing, see 

the entry on Perceiving the World).[26] Several species have been found to discriminate the sex[27] 

or mating history[28] of other octopuses from a distance, based on chemical cues in the water. 
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Additionally, males of several octopus and cuttlefish species are thought to recognize previous 

mates, or potentially competing male sperm, using chemosensing on contact.[24]

In summary, cephalopods are not particularly social animals outside of reproduction. However, 

the mating behaviors of cephalopods are complex and can require cognitively demanding tasks, 

such as memory of prior mates, rapid decision-making, and subtle forms of communication. 

The evolution of sensory abilities and social recognition appear heavily intertwined with these 

reproduction-focused social behaviors. This form of sociality should not be overlooked, then, as 

one of the main evolutionary drivers of cognitive complexity in these highly intelligent animals.
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CHAPTER 6

Navigating the 
Environment
The need to meet higher energy demands, and to do it without the protection of an outer shell, 

drove the soft-bodied cephalopods to evolve adaptations that allow them to hunt prey with 

ruthless effectiveness—and to find safety before falling prey themselves to other predators.[1] 

To achieve this, they use a variety of efficient strategies, taking full advantage of their 

advanced sensory abilities and impressive capacity for learning and thinking about the spatial 

environment. To survive, they must locate and remember food sources,[2],[3] find their way back to 

shelter or home territories,[4] and to remember the location of other members of their species.[5]

Most other molluscs (e.g. snails) rely on a muscular “foot” for moving around. In the cephalopods, 

this foot has been modified into a siphon (a structure that expels water) and a muscular set of 

arms.[6] Their movement relies on concerted contractions of various muscle groups around a 

hydrostatic skeleton: a structure of fluid-filled muscle that can be continually reshaped, allowing 

limbs to become temporarily rigid or flexible as needed.[6] To imagine approximately what this 

is like, think of your tongue or an elephant’s trunk. Cephalopods vary in their specific movement 

styles, depending on the extent to which their shell has been reduced or eliminated by evolution. 

In the nautiloids, the outer shell provides protection, reducing the need for speed and 

maneuverability. They can adjust their buoyancy within the water column by regulating the 

ratio of air and water within different chambers of their shell, and navigate with short bursts 
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of jet propulsion by expelling water through their siphon.[7]  By contrast, squid (Myopsida and 

Oegopsida) have adopted a much more aerodynamic body plan, reducing their shells to all but 

an internal, cartilaginous pen for musculature support. Through undulating fin movements 

and jet propulsion, squids use speed and agility to evade predators.[8] Cuttlefish (Sepiida) have 

similar locomotory movements to squids. They possess a flattened, calcareous cuttlebone 

that assists in regulating buoyancy. This internal shell limits their speed and agility relative to 

squid. They rely instead on crypsis (a general term for camouflage and concealment) to elude 

predation.[9] Octopuses (Octopoda) have lost the shell altogether. Most species move around 

their environments through push and pull movements using their eight arms and suckers, a 

strategy made possible by living on the seabed.[6] They sometimes walk on two or more arms, 

as well as using forward and backward jet propulsion (like cuttlefish and squid). The absence of 

hard body structures, apart from the beak, enables octopuses to fit into incredibly tight spaces 

in order to hide from their predators. Additionally, some deep-sea cephalopods, which live in 

environments with potentially fewer food sources or predatory pressures, employ powered-

swimming using their fins[10]  or “medusoid” swimming using the webbing between their arms.[11]

Having advanced eyes and visual acuity (see “Perceiving the World”),[12] cephalopods have long 

been thought to rely on visual cues or landmarks for short-distance navigation. However, tests 

involving mazes suggest that some species remember sequences of past movements (such as 

a pattern of left or right turns from a given starting position) to help them orient themselves 

in their environment.[13] Cuttlefish have been observed to navigate based on the plane of 

polarization of the ambient light. This may help them navigate in turbid or deep waters where 

other visual cues are limited.[14]

Chemosensation is undoubtedly very important for cephalopods.[15] However, investigations of 

its role in navigation (chemotaxis) have been limited. Two species of octopus (the East Pacific 

red octopus, Octopus rubescens, and the giant Pacific octopus, Enteroctopus dofleini) are known 
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to respond to odor plumes while foraging for food.[3] Additionally, cephalopods possess two 

ways of registering changes in pressure: the lateral line system and statocysts.[16] It is possible 

that these organs might assist some cephalopods to detect their position in the water column, 

facilitating navigation of a three-dimensional environment.

So far, investigations of cephalopod navigation in the wild have focused on octopuses and 

cuttlefish. They display strong tendencies to return to particular sites (“site-fidelity”), while 

searching for prey and mates over extremely large areas away from their dens.[17] One individual 

Pacific giant octopus (E. dofleini) was observed to use an average space of over 50,000 m2 

per foraging trip, apparently navigating by following contours within their environment.[17] 

Meanwhile, a study of foraging behavior in the big blue octopus, Octopus cyanea, observed this 

species to strike out elaborate hunting paths while out hunting for prey and to then head directly 

back to the den once finished, suggesting spatial knowledge of the surrounding area.[4] Similar 

behavior has also been observed in at least two other octopus species (Octopus vulgaris and 

Octopus rubescens).[18],[19] 

There is a particular region of the brain of soft-bodied cephalopods—the vertical lobe complex—

that is thought to be of special significance for learning and remembering the spatial structure 

of the environment. It is often said to be somewhat analogous to the hippocampus in the brains 

of vertebrates.[20] One plausible hypothesis is that soft-bodied cephalopods have two kinds of 

spatial memory: “working spatial memory” that they use when exploring new environments, 

and “reference spatial memory” that they use for home areas that are likely to remain constant 

over time.[8] There is also evidence in cuttlefish of “episodic-like memory”: remembering facts 

about what happened, where, and when to inform decisions while searching for prey. For more 

detail on this, see “Learning and Memory.”[2]
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During spatial learning tasks, cuttlefish have been observed to prefer vertical visual cues over 

horizontal cues when discriminating between two-dimensional targets, highlighting the special 

importance of vertical information for cephalopods as they navigate their three-dimensional 

ocean environments.[21] Interestingly, adult male cuttlefish travel longer distances when 

exploring new environments and rely more heavily on visual cues when solving spatial tasks 

than females or juveniles.[22] These findings suggest sexual dimorphism of spatial cognition in 

this species. This may have arisen because male cuttlefish need to explore larger territories in 

order to maximize potential mates.[22]

Nautiloids lack a vertical lobe and have fewer neurons overall than their soft-bodied cousins. 

Yet they have been observed to learn spatial information relatively quickly within a laboratory 

setting and to retain this information for at least two weeks.[23] These are intriguing findings, 

suggesting that further research on nautiloids, and more detailed comparisons between 

nautiloids and other cephalopods, would be worthwhile.
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CHAPTER 7

Self-Regulation and  
Self-Awareness
In studies of animal minds, researchers define self-regulation or self-control as the ability to 

hold back from seizing a less valuable reward, waiting (or, sometimes, investing greater effort) 

to attain a more valuable reward.[1],[2] By exploring the self-control abilities of other animals, we 

can gain a better understanding of how they make decisions and think about the future.

How do researchers study self-control? A common approach is to use “delayed gratification” tasks, 

which test the animal’s ability to wait for a tastier (or larger) reward, even when they have to 

forego an immediate reward to get it (Figure 16).[3] Self-control abilities have been found in several 

primates,[4] rodents,[5] birds,[5],[6],[7] and fish[8] using these tasks. But what about cephalopods?

In 2021, Alexandra Schnell and colleagues used a delayed gratification task to test common 

cuttlefish (Sepia officinalis).[9] The researchers gave the cuttlefish a choice between a less 

desirable but immediately accessible prey item and a more desirable prey item that (as the 

cuttlefish knew from prior training) could sometimes be accessed after a delay, provided they 

avoided the immediate reward. Cuttlefish tended to avoid the immediate reward and waited up 

to 50–130 seconds to obtain the more valuable reward: clear evidence of self-control.

Intriguingly, the individuals that could sustain longer delays in the task also outperformed 

the others also in a follow-up experiment which tested other learning abilities. Just as in 
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chimpanzees,[10] this points to a link between self-control abilities and general cognitive ability. 

However, future research is needed to investigate this link.

Before this study, there were already some emerging signs of self-control in cephalopods. Both 

the common octopus (Octopus vulgaris) and common cuttlefish can learn to hold back from 

predatory attacks when the prey is able to hurt them (for example, when crabs have stinging sea 

anemones on their backs[11]) or when the prey is inside a container.[12], [13]

This “inhibitory control”—the ability to hold back from executing an instinctive behavior or 

reflex response—is likely to be very important to the predation strategies used by cephalopods, 

especially “ambush feeding.”[14] When hunting highly mobile animals like fishes and shrimps, the 

ability to wait for the right moment is crucial. Cephalopods need to hold back their attack until 

their prey has moved into a vulnerable position from which it can be grabbed. In other kinds of 

animal, such as birds and fishes, performance in inhibitory control tasks has been found to be 

linked to the size of integrative brain regions[15],[16] and to success in survival and reproduction,[17] 

hinting that this need to flexibly override instincts and reflexes may be a crucial driver of the 

evolution of large, complex brains. The same links may well exist in cephalopods too, but this 

has not yet been studied.

Self-awareness is the ability to become the object of one’s own attention.[18],[19] This ability 

comes in degrees: some animals are more or less self-aware than others, and in more or less 

sophisticated ways. This is an important dimension of variation in the conscious lives of 

animals.[20] The “mirror-mark test,”[21] also known as the “mirror test” or the “mark test” is the 

most influential test for assessing self-awareness in other species. The test uses mirror self-

recognition (MSR)—the capacity to identify a reflected mirror image as oneself—as an indicator 

of self-awareness. Animals are first marked with a colored dye on a part of the body that they can 

only see in a mirror. They are then confronted with their reflections. To pass the test, they must 
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exhibit mark-directed responses (such as visual inspection and attempting to remove the mark). 

They must show these responses only in front of the mirror and only towards visible marks.

So far, evidence of mirror self-recognition has been found only in chimpanzees (the original test 

subjects), orangutans,[22] elephants,[23] dolphins,[24] magpies[25] (although an attempt to replicate 

this result failed[26]) and, remarkably, the cleaner wrasse, a small tropical fish.[27] In all cases, 

this evidence has been the subject of intense debate and controversy. Is the mirror-mark test a 

good indicator of self-recognition? Is self-recognition a good indicator of self-awareness? There 

have long been high-profile sceptics.[28],[29],[30] In recent years, a growing number of researchers 

has been advocating for a more gradualist and nuanced approach to studying self-awareness, 

allowing for many intermediate degrees between having no self-awareness at all and possessing 

a concept of self.[19],[20],[31],[32] On this view, rather than asking whether a concept of self is present 

or absent in non-human animals, researchers should be asking to what extent other species are 

self-aware, using a variety of different experiments to investigate this. Some recent experiments 

have investigated much more basic forms of self-awareness, such as being aware of one’s body 

parts and their position and movement in space (“body-awareness”[33]).

What about self-awareness in cephalopods? Cephalopods’ responses to mirrors have been 

explored in a few species with mixed results. In one experiment, some octopuses (Octopus 

laqueus, Hapalochlaena lunulata, and Abdopus aculeatus) did not alter their behavior at all in 

the presence of a mirror.[34] Yet in another experiment, the common octopus (Octopus vulgaris) 

engaged in extensive physical exploration of the mirror and exhibited various agonistic (aggressive 

or defensive) responses, apparently directed at the animal in the mirror.[35] Similar types of social 

behaviors have been observed in cuttlefish and reef squid (S. officinalis, S. pharaonic, Sepioteuthis 

lessoniana[34],[35],[36],[37]). What has never been unequivocally observed in cephalopods is any use of 

a mirror to inspect parts of the body that cannot be seen directly. These self-exploratory behaviors 

would be a clear sign of self-recognition but have not been reported for any cephalopods.[38]
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Are there any signs of responsiveness to marks on the body seen in the mirror, a key part of the 

mirror-mark test? Yuzuru Ikeda has reported that, in an unpublished study, reef squids marked 

with visible dyes did not exhibit mark-directed behaviors, yet showed a stronger tendency to 

interact with their reflections, relative to invisibly-marked animals with access to the same 

mirrors.[39] This would be tantalizingly close to evidence of self-recognition. But since the data 

have not been published, we cannot have high confidence in these claims.

Meanwhile, common octopuses were observed grooming and attempting to remove marks, 

typically using a single arm.[35] However, these mark-directed responses were exhibited even 

when the mirror was not present, and by invisibly-marked individuals. This suggests that 

octopuses were feeling the marks on their skin, not responding to their image in the mirror. This 

highlights a major challenge for experimental researchers: given the incredibly sensitive skin of 

these animals, is it even possible to mark them without them feeling it? The mirror-mark test 

was, after all, originally designed for animals with fur. There is need for new ways of assessing 

self-awareness in cephalopods.

The idea of testing for body awareness, already mentioned earlier, suggests a promising direction 

for the future. In the octopus nervous system, the limbs have a degree of autonomy from the 

central brain.[40] Moreover, body parts are not directly represented in the central brain.[41] It 

seems likely, given this, that the mechanisms supporting the recognition of one’s own body 

parts in cephalopods may differ substantially from those of vertebrates. There are clearly self-

recognition mechanisms of at least a simple kind, since one arm of an octopus can recognize 

another arm of the same animal and refrain from interfering with it, treating it differently from 

the arm of another octopus.[42] But there is much we do not understand about how bodily self-

recognition works in cephalopods. Studying body awareness could be a crucial step toward 

assessing cephalopods’ ability to be aware of themselves.
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CHAPTER 8

Emotion
Emotions are rapid, fleeting reactions to environmental circumstances. They are typically 

categorized into two main types: positive emotions, such as feelings of joy, warmth, pleasure, 

comfort, and excitement; and negative emotions, such as feelings of distress, anxiety, boredom, 

fear, and pain. For more detail on pain, see the next entry, “Pain.”

Emotions do not just involve outward behavioral responses: they also involve inner, subjective 

experiences.[1] This can make attributions of emotion to other animals controversial. Clearly, we 

cannot simply ask other animals how they feel. But we can use a variety of non-verbal methods 

to investigate the behavioral, neurological, and cognitive aspects of emotion, and this can 

provide some insight into what the state might feel like to the animal, even though the evidence 

will not be conclusive. Researchers who are cautious about attributing conscious experiences to 

other animals sometimes use the term “emotion-like state” to refer to a state that functions in a 

similar way to an emotion but may or may not involve the conscious element. Researchers have 

investigated both positive and negative emotions (or emotion-like states) in cephalopods. 

Negative Emotions

Research on cephalopod emotions has centered on their ability to experience negative, aversive 

reactions because these types of emotions raise the most ethical concern. There is strong evidence 

for a form of pain in octopus, cuttlefish, and squid, but this entry will focus on other emotions. 
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Evidence of other negative emotions can be gleaned from the way animals react to unpleasant 

practices or situations. A fair amount of work has investigated the causes of stress in 

cephalopods. For instance, several species of octopus show signs of stress after being caught in 

trawl nets, including compromised immune systems.[2] Exposure to unsuitable temperatures or 

salt concentrations leads to cephalopods exhibiting visual signs of stress and discomfort, such as 

skin blanching and excessive inking.[3] Cuttlefish presented with an approaching predator on an 

iPad screen appear to exhibit a form of fear, responding by freezing, compressing their mantle 

(i.e., body), reducing ventilation rates, and concealing any type of movement.[4] Lack of shelter in 

captive environments can also evoke fear responses in cephalopods (in the form of rapid retreat 

and high-speed jetting), sometimes leading to a lasting depression-like state and withdrawal from 

eating.[5] Cuttlefish frequently display indications of stress in poor captive environments, including 

erratic swimming patterns, loss of appetite, and behaviors reminiscent of depression such as 

reduced activity levels, decreased interest in usual activities, and altered responses to rewards.[6] 

Octopuses kept in unfavorable environments can exhibit “autophagy,” a type of cannibalism 

where an animal eats part of itself.[7] This behavior can occur in all octopus species. It was 

traditionally thought to be caused by stress, but there is now a debate about this, with some 

suggesting that an infectious pathogen causes this behavior,[8] and others arguing that 

autophagy is caused by a number of factors. Crowded environments can also increase stress in 

octopus and cuttlefish, leading to decreased time spent resting and feeding.[9] 

Less is known about negative emotions (beyond pain) in squid and nautilus. However, this gap 

reflects a lack of evidence, not evidence of absence. Future research should prioritize developing 

methods that effectively examine negative emotions beyond pain. Modifying experimental 

techniques used for pain assessment could reveal more nuanced insights into negative emotions 

such as stress, fear, and boredom. 
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Positive Emotions

Positive emotions in cephalopods are even less explored than negative emotions. One study has 

explored how cuttlefish react to unexpected rewards.[10] In this study, cuttlefish were presented 

with an unexpected food reward to assess whether a welcome surprising event would alter their 

decision-making later, when they were presented with a choice between two food items (i.e., a 

large shrimp vs. a small shrimp) (Figure 17). The result was that, when cuttlefish received an 

unexpected food reward, they were quicker to make foraging decisions later. Moreover, they 

became less discerning: their preference for larger shrimp was reduced. Interestingly, though, 

the cuttlefish became less discerning even if they didn’t actually eat the unexpected reward. This 

suggests it is not the act of eating unexpected food rewards that alters subsequent decisions. 

FIGURE 17.  Illustration of the experimental set-up in Chung et al., “The Effect of Unexpected Reward on 

Decision-Making in Cuttlefish.” Cuttlefish were presented with a dual-chamber scenario featuring shrimps of 

varying sizes, aiming to assess their foraging choices. Just prior to this choice, cuttlefish encountered an unexpected 

reward—a small shrimp—to assess the impact of a surprising event on their decision-making process. 
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Merely having tried to capture them, regardless of the outcome, is enough to alter their decision-

making further down the line. This pattern of behavior does not have any obvious interpretation 

in terms of positive emotions, but it may provide a useful platform for future work.

Although the question of positive emotions in cephalopods has received very little investigation 

with experimental methods, there are various behaviors observed in the wild and in captivity 

that are at least suggestive of positive emotional states. These behaviors include exploration, 

interaction with novel objects or enrichments, and forms of apparently playful engagement. 

For example, cuttlefish can use their siphons to spray water at their keeper when they are 

eager to be fed.[11] Can this behavior be classified as a type of play? This is highly uncertain: 

there are various possible explanations for such behavior. Meanwhile, octopuses display a keen 

interest in investigating inanimate plastic objects (i.e., balls, bottles, Lego), towing them around 

their environment, and passing the items between their arms.[12],[13] Octopuses have also been 

observed engaging with floating objects by using jets of water, sending the objects to the far end 

of their tank. They then repeat this action once the object returns, propelled by the incoming 

current from the aquarium water.[14] The question of whether octopuses experience positive 

emotions during these play-like activities remains a topic of ongoing investigation. While such 

actions might suggest experiences of curiosity, enjoyment, or similar positive emotions observed 

in other animals, it’s important to acknowledge that our understanding of positive emotions in 

cephalopods is still developing and needs further research.
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Animals 49 (S2): 1–90. https://doi.org/10.1177/0023677215580006.

This initiative led to guidelines for the care of cephalopod molluscs in research. In the European Union, 

United Kingdom, Canada, Switzerland, Norway, and parts of Australia, animal welfare law requires   

humane treatment of cephalopods used in scientific research.

https://doi.org/10.1038/s41598-022-06443-w
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CHAPTER 9

Pain
What is pain? The International Association for the Study of Pain defines pain as “an unpleasant 

sensory and emotional experience associated with, or resembling that associated with, actual or 

potential tissue damage”.[1] Sentience is much more than just the capacity to feel pain, but pain 

is an element with special significance for ethics and law. 

Because pain is an experience, it goes beyond the mere detection of actual or potential tissue 

damage and beyond reflex responses. Think here of touching your hand against a hot stove. The 

hand withdraws, but this reflex response is controlled by the spinal cord and is already underway 

before you feel any pain.[2] The experience of pain occurs later, when information about the event 

reaches the parts of the brain involved in generating emotional experiences.[3] The experience 

is useful not because it triggers reflexes but because it allows you to tend and treat your injury, 

learn about the threat, and make better decisions in future.

Accordingly, to find evidence of pain in other animals, we need to look for responses to noxious 

stimulation (e.g. injury) that are more sophisticated than reflexes. Finding specialized neurons 

that detect noxious stimuli—nociceptors—is a relevant line of evidence but not enough by itself. 

We should also look for signs that information from the nociceptors is reaching integrative brain 

regions, as well as evidence that the information changes behavior, leading to rapid learning and 

avoidance behavior, wound-tending (or similar) behaviors over extended periods, and altered 

patterns of decision-making about opportunities and risks.
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One experimental approach that can be used to probe questions of pain is a conditioned place 

avoidance and preference test (see Figure 18). An important study by Robyn Crook applied 

this approach to Bock’s pygmy octopus (Octopus bocki).[4] The animals were presented with a 

free choice between two chambers. Their initial preferences were noted, then some received a 

noxious stimulus (an injection of acetic acid in their arm) and were placed in their preferred 

chamber to experience its effects. Later, some received a local anesthetic (lidocaine) on the 

injury and were placed in the other chamber to experience its effects. The question was: would 

these octopuses switch their preferences, developing a lasting aversion for the chamber where 

the effects of injury were experienced and a lasting preference for the chamber where the effects 

of the lidocaine were experienced? In mammals such as rats, this preference shift is taken as 

evidence of pain.[5] The octopuses displayed the same pattern (see Figure 19).

Moreover, Crook observed wound-tending-like behaviors: the injured octopuses would curl 

another arm around their injured arm and scrape at the skin as though trying to remove a toxic 

substance. Crook also recorded the activity in the nerves connecting the injured arm to the central 

brain (brachial connectives), showing a storm of activity that was silenced by the local anesthetic.

The evidence for pain in cuttlefish, though not as strong as for octopuses, is still strong. A recent 

study on juvenile pharaoh cuttlefish (Sepia pharaonis) showed wound-directed grooming 

(brushing their arms over the injected site) to areas that have been injected with acetic acid. This 

behavior stopped, just as in the case of octopuses, when lidocaine was applied.[6] There is no 

evidence yet of conditioned place preferences in cuttlefish, but this is because the experiments 

have not been done rather than because of any negative results.

Although the case is not as strong as for octopuses and cuttlefish, there is also substantial 

evidence of pain in squid. It is clear that squid have nociceptors and that injury produces long-

term behavioral changes. In the longfin inshore squid (Doryteuthis pealeii), injury increases 
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responsiveness to subsequent threats[7] and increases the propensity to school (i.e. seek 

protection in a group).[8] In the Hawaiian bobtail squid (Euprymna scolopes), injury early in life 

has long-term consequences for decision-making later, making the animals permanently more 

cautious around predators.[9]

A comprehensive review of the evidence in 2021 (involving two of the authors of this summary, 

Birch and Schnell) concluded that there is very strong evidence of pain in octopuses and 

substantial evidence in squid and cuttlefish.[10] There is very little evidence one way or the 

other concerning nautiluses. To err on the side of caution, however, we should assume that all 

cephalopods—not just octopuses—are capable of experiencing pain.

FIGURE 18.  Crook’s conditioned place avoidance and preference test for pain. A, Octopus in the apparatus. B, 

Diagram of the apparatus. C, Timeline of an experiment. In this example, an octopus showed a preference in session 1 

for the dot chamber, so was given an injection of acetic acid prior to confinement in the dot chamber and/or lidocaine 

prior to confinement in the striped chamber, to see whether its preferences would reverse. Reproduced from Crook, 

“Behavioural and Neurophysiological Evidence Suggests Affective Pain Experience in Octopus.” / CC-BY-NC-ND 4.0.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
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FIGURE 19.  A graphical representation of the results of Crook’s conditioned place 

avoidance and preference test. Reproduced from Crook, “Behavioural and Neurophysiological 

Evidence Suggests Affective Pain Experience in Octopus.” / CC-BY-NC-ND 4.0.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
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This initiative led to guidelines for the care of cephalopod molluscs in research. In the European Union, 
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treatment of cephalopods used in scientific research.
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CHAPTER 10

Key Welfare Needs
Caring for the physical and mental wellbeing of animals of other species always requires a 

deep understanding of that species’ physiology, ecology, behavior, and cognition. Currently, 

cephalopods are kept in human-controlled environments for various purposes.[1] They are 

commonly displayed in public aquariums around the world. For more than 100 years, they 

have also been used as experimental animals in scientific research.[2],[3],[4] Moreover, apparently 

increasing demand for cephalopods for human consumption[5],[6] has been driving controversial 

attempts to farm octopuses commercially on a large scale.[7]

Although welfare guidance for cephalopods has existed since at least 1928,[8] it is fair to say 

this group has been relatively neglected in the field of animal welfare science.[9] However, 

accumulating evidence in support of their sentience, capacity for pain (see “Pain”), and cognitive 

sophistication (see “Problem Solving and Intelligence,” “Learning and Memory”).have been 

leading to governmental and scientific initiatives to build better laws, regulations, and guidelines. 

One recent example was the recognition of cephalopods (along with decapod crustaceans) as 

sentient beings by the UK government’s Animal Welfare (Sentience) Act 2022. Another was the 

inclusion of cephalopods in the European Union Directive 2010/63/EU, which regulates the use 

of animals for scientific research.[10],[11] Following this legal milestone, an international team of 

researchers developed guidelines for the care and welfare of cephalopods in research.[12] This work 

provided valuable yet broad recommendations about the best conditions and practices related to 

the capture, transport, welfare monitoring, anesthesia, euthanasia, and husbandry of cephalopods. 
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Known welfare needs

As for all aquatic animals, water features—including temperature, salinity, and quality (e.g., O2, CO2, 

pH, nitrogenous compounds)—are vital for the wellbeing of cephalopods. These parameters must 

be monitored constantly and adjusted according to the specific physiological needs of each species. 

Particular attention should be paid to the monitoring of dissolved oxygen and nitrogenous 

compounds. This is because cephalopods have, respectively, fast metabolic rates[13],[14] and 

carnivorous diets.[15] Protein-rich food may lead to the accumulation of nitrogenous compounds 

in toxic concentrations, leading to adverse effects on the organism’s physiology and behavior.[16] 

The features of the enclosure also play a fundamental role in the welfare of cephalopods and 

must be designed carefully on the basis of several factors, such as the lifestyle and body size 

of the animal. Because most octopuses and cuttlefish are benthic species (that is, they spend 

most of their time in contact or in proximity to the seafloor), the size of the bottom surface of 

the tank is particularly relevant.[12] The presence of dens, sheltered areas, or sandy substrates 

(for sand-dwelling species) is a crucial requirement for these species.[12],[17] The lack of such 

elements may induce high levels of stress.[18] 

Meanwhile, the depth and shape of the enclosure are especially relevant for cephalopods that 

spend most of their time far from the seafloor. For example, cylindrical tanks are recommended 

for nautiluses to accommodate their natural vertical migration in the water column;[19] circular 

or elliptical tanks are considered more appropriate for pelagic squids to better support their 

natural locomotion while also limiting chances of physical injury from hitting solid corners.[20],[16] 

The complexity of the physical and social environment also needs consideration. Several 

species live in complex physical habitats, such as coral reefs and seagrass meadows. In these 

cases, physical enrichment (e.g., inclusion of natural elements like stones and corals in the 
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tanks) is recommended as it can encourage the expression of natural behaviors, such as object 

manipulation and food-searching activities in octopuses.[21],[22],[23] 

Social systems and natural social tendencies vary a great deal between species (see “Sociality and 

Mating Strategies”). For gregarious species like most squids, group housing is encouraged.[20]  

When housing a group together in the same tank, it is crucial to adjust stocking densities, sex 

ratio, and body size differences to fit both species-specific needs and the features of the enclosure. 

By contrast, most octopuses typically display weak social tolerance and even cannibalistic 

tendencies.[24] Individual housings are therefore recommended for these species.[12] The presence 

of other octopuses in confined spaces may induce distress and aggressive interactions, whose 

escalation could lead to physical injuries and potentially fatalities, particularly in cases of 

large differences in body size among the animals. We also note, however, that octopuses have 

occasionally been observed living in high densities and clumped dens in the wild (e.g., Octopus 

tetricus[25] and Octopus vulgaris[26]). This suggests that the ability of some octopus species to 

tolerate other octopuses may be greater than traditionally assumed. 

Another key consideration is that the welfare needs of cephalopods vary hugely. There are more 

than 800 cephalopod species, which differ dramatically in their biological adaptations, lifestyles, 

ecology (e.g., diet, habitats), social systems, and behavior (see “Diversity of the Cephalopods”).[27]  

Importantly, welfare needs can vary substantially between closely-related species and even 

within the lifespan of an individual.[12],[28] The hatchlings (paralarvae) of species like Octopus 

vulgaris resemble small squid-like creatures that live in the water column, rather than 

miniatures of the adults living on the seafloor.[29] A few weeks after hatching, the paralarvae 

settle down, acquire the typical appearance of an octopus, and subsequently undertake very 

rapid growth. This marked variation in lifestyle as well as in size (from a few grams, up to 10 kg 

in O. vulgaris) is matched by an equivalent variation in welfare needs.
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One of the major challenges in the field of cephalopod welfare is refining current guidelines 

and practices in order to address this enormous variability, both within and between species, 

in welfare needs. Recently, important steps have been taken in this direction through the 

production of more detailed recommendations for the care of some of the species most 

commonly used in research.[30] However, many gaps remain to be filled. In addition, substantial 

efforts should also be dedicated to developing more effective procedures for assessing 

cephalopod health and welfare (see “Knowledge Gaps”).
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CHAPTER 11

Knowledge Gaps
There is much we still do not know about the cephalopods—and many areas where new evidence 

would be incredibly valuable. 

Cognition in Cephalopods

Cephalopods exhibit various sophisticated cognitive abilities (see “Problem Solving and 

Intelligence,” “Learning and Memory”), which makes them intriguing subjects for scientific 

study. Despite extensive reviews on cephalopod behavior, body patterning, and learning 

abilities,[1],[2],[3],[4],[5] gaps in our understanding of their cognition remain. 

WHY DID CEPHALOPOD INTELLIGENCE EVOLVE?

A big-picture knowledge gap concerns the evolution of complex cognition in cephalopods. 

According to the “social intelligence” hypothesis, complex social interactions drive the evolution of 

cognition. However, cephalopods demonstrate advanced cognitive abilities even though they do not 

live in complex social environments. This indicates that other evolutionary pressures may be at play 

when selecting for intelligent traits.[6],[5] By comparing cephalopods with other groups of animals, 

we can study how different selective pressures may have shaped the evolution of intelligence. 

HOW DO BRAIN AND BEHAVIOR RELATE? 

Cephalopods are renowned for their extraordinary behavioral flexibility, supported by 

sophisticated brain mechanisms. Despite this, the precise relationship between their brain 
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organization and their behavioral flexibility remains inadequately understood. Current research 

highlights the complexity of cephalopod neural systems but often falls short of connecting 

specific neural structures to particular behaviors. Further investigation is needed to map these 

mechanisms to their corresponding behavioral functions.[7],[8]

Recent advances in cephalopod neuroscience have shed light on the cellular, molecular, 

and synaptic mechanisms underpinning their nervous systems.[9],[10] However, there is still 

a need for comprehensive studies on how these neurological mechanisms relate to higher 

cognitive functions. Future research is likely to shed new light on the molecular pathways and 

synaptic connections involved in complex behaviors and cognition and how these compare to 

mechanisms in other species.[11],[12] 

LEARNING AND MEMORY

Research on cephalopod learning and memory has provided valuable insights into their cognitive 

abilities, with studies exploring many kinds of learning.[3],[13],[6],[5] However, there remains a gap in 

understanding the full spectrum of learning types and the underlying brain mechanisms involved. 

For instance, some cephalopod species have demonstrated the ability to remember past events[14],[15] 

and plan for imminent future scenarios by delaying gratification,[16] showcasing advanced abilities 

for thinking about time. It remains unclear how many cephalopod species have these abilities. 

Moreover, it remains unclear whether they can plan for the distant future. Moreover, detailed 

studies are required to delineate how cephalopods encode, store, and retrieve memories.[17],[5],[18] 

HOW ARE THE MINDS OF CEPHALOPODS SHAPED BY THEIR SENSORY ABILITIES?

Cephalopods possess highly developed sensory systems, particularly in vision and equilibrium 

(that is, monitoring changes in their body’s position and motion).[19],[20] Yet the relation between 

sensory and cognitive processes is not yet well understood. Future research is likely to provide 

more insight into how cephalopods process sensory inputs to inform decision-making.[21],[22] 
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The Welfare of Cephalopods

The welfare of cephalopods has increasingly come under scrutiny. Although enough is already 

known to inform welfare regulations (see “Key Welfare Needs”), major evidence gaps remain.

ANESTHESIA AND PAIN RELIEF

The development of reliable anesthetic procedures for cephalopods is still in progress. Various 

substances have been tested with mixed success[23],[24] and there is still much to learn about 

their mechanisms and effects.[25],[26],[27] Magnesium chloride and ethyl alcohol have shown the 

most promising results, particularly in both tropical octopus and cuttlefish species[28] as well as 

temperate species.[29] The effectiveness of these anesthetics depends on various factors including 

age, sex, life stage, and environmental conditions, all of which remain insufficiently explored. It 

would be useful to develop pain scales similar to those used for mammals[30] and to explore ways 

for cephalopods to self-administer pain relief when they need it.[31],[32] 

In the development of anesthetics, there is a need to distinguish reliably between immobilization 

and genuine loss of consciousness.[28] This distinction is crucial because anesthetics may 

immobilize cephalopods without fully addressing their capacity to experience pain. 

HUMANE KILLING AND WELFARE ASSESSMENT: IS HUMANE KILLING POSSIBLE?

Protocols for the killing of cephalopods clearly need refinement. Current recommendations[24] 

lack detailed guidelines. More work needs to be done on the validation of existing methods and 

the exploration of alternatives. Standardized assessments of consciousness and suffering are 

crucial for effectively evaluating practices as more or less humane. 

THE NEED FOR BETTER WELFARE INDICATORS

The development of reliable welfare indicators for cephalopods is also needed. Current metrics 

often focus on health changes or physiological stress rather than directly capturing feelings.[33],[34] 
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A comprehensive approach to assessing cephalopod welfare should include both physiological 

and psychological aspects. As a starting point, models used for other species, such as the 

welfare scoring system for Atlantic salmon[35] could be adapted for cephalopods. Current efforts 

to develop a “Cephalopod Welfare Index” aim to provide a more holistic welfare monitoring 

system.[24] Non-invasive methods, such as ultrasonography and endoscopic techniques, are 

emerging as tools for health assessment, though they require further refinement.[36],[37],[38] 

Additionally, body patterns and abnormal behaviors are being investigated as psychological 

parameters of welfare.[39],[40]  

POSITIVE AND NEGATIVE EMOTIONS: BEYOND PAIN

Cephalopod emotions, particularly positive ones, remain under-researched. While behaviors 

such as play, exploration, and problem-solving have been observed,[41],[42] there is a lack of 

experimental testing to determine whether these behaviors are associated with positive 

emotions like joy, curiosity, and satisfaction. 

While pain has been relatively well researched (see “Pain”), other negative feelings such as 

stress, fear, and boredom have been understudied. Investigating a wider range of potential 

negative feelings is essential for a comprehensive understanding of cephalopod emotions. 

CEPHALOPOD HUSBANDRY AND REPRODUCTION

Cephalopods are cultured in captivity for various purposes including consumption, display, 

restocking, and scientific research.[43],[44],[45],[46] Challenges persist, particularly in the areas 

of nutrition and reproduction. Cephalopods are carnivorous, requiring diets composed of 

marine-based proteins. This reliance on marine sources poses sustainability challenges, as it 

can contribute to overfishing and strain on marine ecosystems. Additionally, the efficiency of 

converting feed into body mass (feed conversion ratio) in cephalopods is an area that requires 

further research to improve sustainability. Developing alternative, non-marine-based diets 
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that meet the nutritional needs of cephalopods without compromising growth and health 

is an important step to making their aquaculture more sustainable. A better understanding 

of cephalopod digestive physiology and feeding habits will likely be needed to design more 

sustainable diets.[ 47],[48],[49],[50] 

Reproductive methods also need refinement. This includes better control of sexual maturation, 

understanding natural factors influencing reproduction, and improving brood stock conditions. 

Better replicating the conditions cephalopods experience in the wild could increase their 

chances of reproducing successfully.[51],[52] There is also a need for greater standardization of 

husbandry techniques and for effective incubation methods, particularly for species like Octopus 

vulgaris that are valuable in aquaculture.[53],[45] 

Enhancing our knowledge of cephalopod immune systems and disease management will be 

essential if we are to prevent disease outbreaks in captivity.[54],[55],[56] Implementing standardized 

techniques for documenting parasites and pathogens would aid in disease prevention and 

management. Additionally, exploring the potential use of probiotics, which have proven 

beneficial in other animal groups, could be valuable for cephalopods. Accordingly, identifying 

beneficial gut bacteria is one current research priority.[57],[58],[59]  
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