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June 13, 2022
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Motivation: Metabolite identification using mass spectrometry

Goal: help chemists to identify metabolites in a biological sample using
mass spectra.
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(Dührkop et al., 2015, Nguyen et al. 2018)
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Supervised metabolite prediction from mass spectra

Assume we observe pairs of mass spectra and graphs, use them to train a
labeled graph prediction model

(Brouard et al. 2016, Brouard et al. 2019)
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Structured prediction

Learning problem
Given some loss function ∆ : Y × Y → R, the structured prediction
problem writes as:

min
f∈F(X ,Y)

EX ,Y [∆(Y , f (X ))]. (1)

In supervised learning, we aim at finding a good estimator fn in some
hypothesis space H of a minimizer of this problem using a given sample
i.i.d. {(xi , yi )n

i=1}) .
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Structured prediction: challenges

• the space Y is finite and huge !
• how to make this problem amenable to continuous optimization ?
• in the literature, different relaxations of the problem: energy-based

learning, end-to-end learning, surrogate approaches (this talk)
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Proposition of a generic framework

• Choose an appropriate representation vector space Z for complex
outputs

• Regress the output Z = ψ(Y ) in this representation space Z
especially by leveraging regularization and get h : X → Z

• Structured prediction: at testing time, solve a pre-image problem
and get f : Z → Y by decoding f = d ◦ h
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Get the intuition with molecule identification from mass spectra
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Novel problems to solve

1. Define Z and ψ : Y → Z
2. Learn h : X → HkY to predict ψ(y) given x
3. Solve a pre-image problem : compute f (x) = d ◦ h(x) where d is a

”decoding function”.
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Leveraging the kernel trick

In this talk, focus on:

• Learning functions with values in a Hilbert space Z
• Z is chosen to be a Reproducing Kernel Hilbert Space associated to

a so-called output kernel, i.e. a similarity between outputs.

We called the corresponding family of regression tasks: output kernel
regression.
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Output Kernel Regression: use kernel trick in the output space

Choose a kernel ky : Y × Y → R that encodes the similarity between
structured objects
Take ψ(y) = k(·, y)
Z := HkY
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Example: kernel between molecules

Based on FingerID [Heinonen et al., 2012; Dührkop et al., 2015; Nguyen
et al., 2018]
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Figure 2.7: Illustration of the fingerprint concept.

2.3 Molecular fingerprints

An important step in automated identification of metabolites is to measure
the similarity between two molecular structures, e.g. provided in a molecular
structure database. As molecules are very complex objects it is necessary
to define a data representation, which takes this complexity into account.
However, this data representation should at the same time allow e�cient
operations, e.g. similarity calculation. One way to define such a data repre-
sentation are so called molecular fingerprints. These “fingerprints” are (most
commonly) binary vectors where each bit indicates the presence or absence
of a certain structure in the molecular graph, e.g. rings, atom pairing, etc.
(Dührkop et al., 2015; PubChem, 2009). Figure 2.7 illustrates the concept
of fingerprints given a molecule respectively its molecular graph. As finger-
prints are binary vectors their similarity can be e�ciently calculated in many
di↵erent ways, e.g. cosine similarity or Tanimoto coe�cient (Dührkop et al.,
2015). Di↵erent databases are existing providing di↵erent fingerprint defi-
nitions, e.g. PubChem5 or OpenBabel6. In this work we are going to use a
combination of fingerprints from di↵erent databases (see also Section 5.2).

2.4 Simulation of MS/MS spectra using com-

petitive fragmentation modeling

The fragmentation process using collision induced dissociation (CID) (see
Section 2.1.5) is a stochastic process. A biological sample not only contains

5https://pubchem.ncbi.nlm.nih.gov/
6http://openbabel.org/wiki/Main_Page

23

• Use molecular fingerprint c(y) ∈ Rd to encode the structure of a
molecule as a (very large) binary vector

• Each entry indicates the existence or the frequency of a certain
molecular property: atom or bond type, substructure (e.g. aromatic
ring).

Use a Gaussian kernel on c(y) : kY(y , y ′) = exp(−γ‖c(y)− c(y ′)‖2)
12



Advantages of defining a kernel k(y , y ′) i?

• Allowing infinite dimensional embeddings while leveraging the
kernel trick

• One principle to rule them all: kernels for various structured objects
(See Gaertner 2006), opening the door to many structured tasks

• label ranking (see Korba et al. 2018)
• link prediction (Geurts et al. 2006, 2007)
• image completion (Cortes et al. 2005, ...)
• graph prediction (Brouard et al. 2020, Brogat-Motte et al. 2021)

A constraint however: to benefit from the kernel trick, not all the
losses are suitable !
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Structured prediction with Output Kernel Regression

Now take ∆(y , y ′) = `(ψ(y), ψ(y ′)) and replace the target problem in
Eq.1 by the surrogate problem:

min
h:X→Z

EX ,Y [`(ψ(Y ), h(X ))].

Empirical (regularized) counterpart: with Ω : H → R+ and λ > 0
given some hypothesis space H,

min
h∈H

1
n

n∑
i=1

`(ψ(yi ), h(xi )) + λΩ(h),

using a given dataset {(xi , yi )n
i=1}.

Once we get hn, define
fn(x) = d ◦ hn(x) = arg miny∈Y `(ψ(y), hn(x))
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From a practical point of view

One wishes to use the kernel trick...

• Condition 1: ` must be computed by using inner products
〈ψ(y), ψ(y ′)〉HkY

= k(y , y ′).
• Condition 2: if an estimated model hn writes as:

hn(x) =
n∑

i=1
βi (x)ψ(yi )

β : X → Rd , then if ` satisfies Condition 1, one can compute
fn(x) = arg miny∈Y `(ψ(y), hn(x)).

Non-parametric models come to the place: trees-based approaches,
k-nearest-neighbors, ... , kernel methods
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Kernel-based approach

• Leverage convex optimization, govern regularization
• Allow for structured data in the input space as well.
• Structured Encoding Loss Framework (Ciliberto et al. 2016) /

Implicit Loss Embedding (Ciliberto et al. 2020): Fisher Consistency,
and the excess risk of f governed by the excess risk of h.

OK, but to get functions with values in Hilbert space Z: we need
Operator-Valued Kernels (OVK) !
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Operator-valued Kernels and vector-valued Reproducing Kernel
Hilbert Spaces

• (Pedrycs, 1957 ) theory of vv-RKHS
• (Senkene and Tempel’man, 1973) theory of vv-RKHS
• (Hein and Bousquet, 2004) survey on positive definite kernels,

including a short introduction to OVK
• (Micchelli and Pontil, 2005) learning vector-valued functions with

OVK
• (Carmeli et al., 2006) theory of vv-RKHS
• (Carmeli et al. 2010) vv-RKHS and universality
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From scalar-valued kernels to operator-valued kernels

Notations: if Z is a Hilbert Space, L(Z) is the space of bounded linear
operators on Z.

Scalar kernel Operator-valued kernel
k(x , x ′) ∈ R K(x , x ′) ∈ L(Z)

k(x , x ′) = k(x ′, x) K(x , x ′) = K(x ′, x)∗
∀(xi , zi )m

i=1 ∈ (X × R)m, ∀(xi , zi )m
i=1 ∈ (X × Z)m,∑m

i,j=1 zi zj k(xi , xj ) ≥ 0
∑m

i,j=1〈zi ,K(xi , xj )zj 〉Z ≥ 0

Hk = Span {k(·, x), x ∈ X} HK = Span {K(·, x)z : x , z ∈ X × Z}
〈f , k(·, x)〉Hk = f (x) 〈f ,K(·, x)z〉HK = 〈f (x), z〉Z
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Hint: think about the matrix-valued case

Z = Rd

• A trivial kernel : K(x , x ′) = IZ .k(x , x ′), where IZ is the d × d
identity matrix (independent outputs)

• A separable kernel: K(x , x ′) = A.k(x , x ′) where A is positive
semi-definite matrix d × d (dependencies between outputs)

Important! As in scalar kernel methods, choosing K implies choosing
the way you want to regularize when using ‖ · ‖HK
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Separable Operator-valued kernels

In particular, we will make use of a special separable operator-valued
kernel:

K (x , x ′) = IHYk(x , x ′),

which allows us to work with outputs in HY .

21



More about operator-valued-kernels

Again general case: Z Hilbert Space

Scalar kernel Operator-valued kernel
Representer theorem: Representer Theorem:

minh∈Hk L(h(x1), . . . , h(xn)) + λ‖h‖2
Hk

minh∈HK L(h(x1), . . . , h(xn)) + λ‖h‖2
HK

hn(x) =
∑n

i=1 k(x , xi )αi ∈ R hn(x) =
∑n

i=1K(x , xi )αi ∈ Z

N.B. A representer theorem for OVK but still we do not know how to
compute αi ∈ Z
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A simple case: kernel ridge regression 1/2

Assume we observe (xi , zi )n
i=1, define an operator-valued kernel

K : X × X → L(Z) such that: K (x , x ′) = IdZkX (x , x ′)
Let us consider, for λ > 0:

min
h∈HK

1
n

n∑
i=1
‖zi − h(xi )‖2

Z + λ‖h‖2
HK (2)
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A simple case: kernel ridge regression 2/2

• The representer theorem (Micchelli and Pontil, 2005) applies
• The unique minimizer hn writes: hridge(x) =

∑n
i=1K(x , xi )α̂i

where α̂i ’s enjoy a closed form, yielding to the following expression:

hridge(x) =
n∑

j=1
βj(x)zj , (3)

with: β(x) = (Kx + nλI)−1κx
X

and κx
X = [kX (x1, x), . . . , kX (xn, x)]T .
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Back to structured prediction: Input Output Kernel Ridge Re-
gression (ridge-IOKR)

Now the feature space Z := HkY is the RKHS associated to kY , a kernel
on Y.
Define the OVK K (x , x ′) = IdHkY

kX (x , x ′)
Denote ψ(y) = kY(·, y).

hn(x) =
n∑

i=1
βi (x)ψ(yi ), (4)

with: β(x) = (Kx + nλI)−1κx
X

and κx
X = [kX (x1, x), . . . , kX (xn, x)]T and λ > 0.

Then, we are able to compute

fn(x) = arg min
y∈Y
‖ψ(y)− h(xi )‖2

HkY
, (5)

using only inner products of ψ(yi )s.
NB. We retrieve Kernel Dependency Estimation of Cortes et al. as well.

25



More about kernel ridge regression with input and output ker-
nels

• Leveraging unlabeled input data: semi-supervised IOKR (ridge or
not) - Brouard et al. 2011,16 with nice applications to link
prediction.

• Leveraging structure in the output feature space: reduced-rank
approach Work of Luc Brogat-Motte et al., submitted
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Now more interesting loss functions: sparsity and robustness

ε-Ridge
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Data-sparse and robust loss: the example of ε-insensitive loss

Data-sparse and Robust losses [Sangnier et al. 2017, Laforgue et al.
2020]:
With a slight abuse of notation
Let ` : Z → R be a convex loss with unique minimum

at 0, and ε > 0. The ε-insensitive version of `, denoted `ε, is defined
by:

`ε(z) = (` � χBε) (z) =

 `(0) if ‖z‖Z ≤ ε
inf

‖d‖Z≤1
`(z − εd) otherwise ,

Infimal convolution: (f �g)(x) = infx ′ f (x ′) + g(x − x ′). (Bauschke et
al. 2011)
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Reminder: representer theorem and convex losses

General case: the output space is Z: Hilbert Space and output training
data are denoted zi . Let ` : Z → R a convex loss.

Theorem (Micchelli et Pontil 2005)

The solution to the learning problem is given by

hn = 1
λn

n∑
i=1
K(·, xi )α̂i , (6)

with (α̂i )n
i=1 ∈ Zn the solutions to the dual problem:

Problem

(Brouard et al. 2016, Sangnier et al. 2017)
min(αi )n

i=1∈Zn
∑n

i=1 `
?
i (−αi ) + 1

2λn
∑n

i,j=1 〈αi ,K(xi , xj)αj〉Z ,

where g? : α ∈ Z 7→ supz∈Z 〈α, z〉Z − g(z) denotes the
Fenchel-Legendre transform of a function g : Z → R.

with `i (y) = `(yi − y).
29



Some limitations

• 1st limitation: the Fenchel-Legendre transform `? needs to be
computable (→ assumption)

• 2nd limitation : the dual variables (αi )n
i=1 are still infinite

dimensional!

If Z = Span{zj , j ≤ n} invariant by K, i.e.
∀(x , x ′), z ∈ Z ⇒ K(x , x ′)z ∈ Z

α̂i ∈ Z → possible reparametrization
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The double representer theorem

Laforgue et al. ICML 2020.
Theorem (Double representer theorem)

Assume that OVK K and loss ` satisfy the appropriate assumptions
(see paper for details, verified by standard kernels and our losses), then

ĥ = argmin
HK

1
n
∑

i
`(h(xi )− zi ) + λ

2 ‖h‖
2
HK is given by

ĥ = 1
λn

n∑
i,j=1
K(·, xi ) ω̂ij zj ,

with Ω̂ = [ω̂ij ] ∈ Rn×n the solution to the finite dimensional problem

min
Ω∈Rn×n

n∑
i=1

Li
(
Ωi :,K Z)+ 1

2λn Tr
(
M̃>(Ω⊗ Ω)

)
,

with M̃ the n2 × n2 matrix writing of M s.t. Mijkl = 〈zk ,K(xi , xj)zl〉Z .
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Specific dual problems for our losses 1

If K = k IZ , the solutions to the ε-Ridge regression, κ-Huber regression,
and ε-SVR primal problems

(P1) min
h∈HK

1
2n

n∑
i=1
‖h(xi )− zi‖2

Z,ε + Λ
2 ‖h‖

2
HK ,

(P2) min
h∈HK

1
n

n∑
i=1

`H,κ(h(xi )− zi ) + Λ
2 ‖h‖

2
HK ,

(P3) min
h∈HK

1
n

n∑
i=1
‖h(xi )− zi‖Z,ε + Λ

2 ‖h‖
2
HK ,

are given in next slide, with Ω̂ = Ŵ V−1, and Ŵ the solution to the
respective finite dimensional dual problems
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Specific dual problems for our losses 2

For the ε-ridge, ε-SVR and κ-Huber, it holds Ω̂ = Ŵ V−1, with Ŵ
the solution to these finite dimensional dual problems:

(D1) min
W∈Rn×n

1
2 ‖AW − B‖2

Fro + ε ‖W ‖2,1,

(D2) min
W∈Rn×n

1
2 ‖AW − B‖2

Fro + ε ‖W ‖2,1,

s.t. ‖W ‖2,∞ ≤ 1,

(D3) min
W∈Rn×n

1
2 ‖AW − B‖2

Fro ,

s.t. ‖W ‖2,∞ ≤ κ,

with V , A, B such that: VV> = K Y , A>A = K X/(λn) + In

(or A>A = K X/(λn) for the ε-SVR), and A>B = V .
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Projected Gradient Algorithm

Projected Gradient Descent algorithms with appropriate projection
operator. For instance, (D1) is a multi-task lasso problem (See Obozinski

et al. 2010)
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Proximal operators

Block Soft Thresholding operator: BST(x , τ) = (1− τ/‖x‖)+ x .
Projection operator for (D2) such that Proj(x , τ) = min (τ/‖x‖, 1) x .
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More on IOKR

• Generalization bounds in the context of algorithm stability (extension
of Elisseff, 2002; Audiffren and Kadri (2013); Laforgue et al. 2020)

• Deep IOKR: the example of KAE, kernel autoencoder (Laforgue et
al. 2019), Deep structured prediction (El Ahmad et al., current
work)

• Reduced-rank IOKR (a low-rank approach to IOKR-ridge with excess
risk bounds, Brogat-Motte et al. submitted in 2021)
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IOKR: the big picture
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Input kernels: probability product kernel

• A mass spectrum is defined as a set of peaks: x = {x(`)}nx
`=1.

• Each peak is modeled as a 2D normal distribution centered around
the observed position: px(`) ∼ N (x(`),Σ).

• The covariance is shared with all peaks: Σ =
[
σ2

m 0
0 σ2

i

]
.

39



Input kernel: probability product kernel

• A spectrum is represented as a mixture of its peak distributions:

px = 1
nx

nx∑
`=1

px(`).

• Probability product kernel [Jebara et al., 2004] between the peaks of
two spectra x and x ′:

k(x , x ′) =

∫
R2

px (z)px′ (z)dz

=
1

nx nx′

1
4πσmσi

nx ,nx′∑
`,`′=1

exp
(
−

1
4

(
x(`)− x ′(`′)

)T
Σ−1
(

x(`)− x ′(`′)
))
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IOKR on metabolite prediction

Metabolite dataset: initially represented by 4136-size fingerprints
(Brouard et al., 2016). Tanimoto kernel. Training data: 5579 molecules,
Test data: 1359 molecules.

Table 1: Top 1 / 10 / 20 test accuracies (%)

λ 1e-6 1e-4

ridge-IOKR 35.7 | 79.9 | 86.6 38.1 | 82.0 | 88.9
Huber-IOKR 38.3 | 82.2 | 89.1 37.7 | 81.9 | 88.8
ε-2-IOKR 37.1 | 81.7 | 88.3 36.3 | 81.2 | 87.9
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More extensive results on metabolite datasets (5-CV)

Method Tanimoto-Gaussian loss Top-k accuracies

k = 1 — k = 5 — k = 10

SPEN 0.537± 0.008 25.9% | 54.1% | 64.3%
ridge-IOKR 0.463± 0.009 29.6% | 61.1% | 71.0%
reduced-rank-IOKR 0.459± 0.010 30.0% | 61.5% | 71.4%

SPEN: Structured Prediction Energy Network (the best variant,
structured hinge loss and feature network - Belanger et al. 2017)
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Other ”complex” output variables

All these problems can be addressed by learning functions with outputs
in a Hilbert space

Discrete structures

Label Ranking
Sequence, tree prediction
Graph prediction

Multiple Tasks
Hierarchical Classification
Multi-label Classification
Multiple Output Regression

Functions
Infimum of Tasks Learning
Functional Regression
Meta-modeling
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Quantile regression for fish age prediction

Many reasons for quantile regression: outliers in the data, more
robustness is asked...

Question: Predict any θ-quantile of Y given x , for θ ∈ (0, 1) [Brault et
al. 2019]
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Comparison with structured output regression

X : input space

Structured prediction
Y: finite set of structured objects
kY : kernel over Y

Z := HkY : RKHS associated to kY
X h−→ Z d−→ Y

Goal: obtain f (x) = d ◦ h(x)

Infinite Task learning
Y: output (observation) space
Θ: task parameter space
kΘ: kernel over Θ
Z := HkΘ : RKHS associated to kΘ

X h−→ (Θ→ Y)︸ ︷︷ ︸
Z

Goal: obtain h(x)(θ)
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Conclusion

• The kernel trick used in the output space
• Leveraging vv-RKHS for learning output in infinite dimensional

embedding space
• Practical algorithms even for losses more involved than the squared

loss
• Other results: generalization bounds within the algorithm stability

context, excess risk beyond SELF framework
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Perspectives

• Scaling up the approaches:
• Exploit approximations (Random Fourier features: Brault et al.

2017; Projection Learning: Bouche et al. 2020, Sketching, current
work of El Ahmad et al.)

• Kernel Learning:
• Exploiting approximations for both input and output kernel
• Deep hybrid architecture (learning K) - see for instance (Laforgue et

al. 2019, Giffon et al. 2019, Li et al. 2019, Lambert 2021)
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Additional thoughts ...

• Handling output features is not exclusive of kernel methods: see
label embedding in one-shot/few-shot learning (Lampert et al. 2015,
Djerrab et al. 2018), work of Lerouge et al. (2015) around IODA
and Belharbi et al. (2017), for neural networks.

• Leveraging distances like those in Optimal Transport (see Luise,
Rudi et al. 2018) yields to other non-parametric models: see
Brogat-Motte et al. ’s work on graph prediction with
Fused-Gromov-Wasserstein barycenters (ICML 2022).
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Codes

• Dualization and Robust losses
(https://github.com/plaforgue/dual_exp), Pierre Laforgue

• Infinite task Learning: torch-itl
(https://github.com/allambert/torch_itl), Alex Lambert,
Sanjeel Parekh, Dimitri Bouche.

• Reduced-Rank IOKR (not yet public, Luc Brogat-Motte)
• Operalib (https://github.com/operalib/operalib) (Romain

Brault) RFF for OVK, KRR, IOKR, ITL
• Currently tested : release of a general scikit-learn compatible library

with Hi!Paris engineering group: if interested to test it, please send
me an email.

50
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• P. Laforgue, S.Clémencon, Florence d’Alché-Buc: Autoencoding any Data through Kernel
Autoencoders. AISTATS 2019: 1061-1069

• P. Laforgue, A. Lambert, L. Brogat-Motte, F. d’Alché-Buc: Duality in RKHSs with Infinite
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Output Kernel Regression fits the SELF and ILE framework

Structured Encoding Loss Function (SELF, Ciliberto et al. 2016),
Nowak-Villa (2018, 2019), Luige et al. 2019, and Consistent Structured
prediction with Implicit Loss Embeddings (2020):

• general conditions on Y and losses to get Fisher consistency and
excess risk bounds
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SELF property and consequences

Definition (SELF loss - Ciliberto et al. 2016)
∆ : Y × Y → R is said to be SELF if it exists a separable Hilbert space
F , a feature map φ : Y → F and a bounded linear operator A on F such
that:

∆(y , y ′) = 〈φ(y),Aφ(y ′)〉F

Theorem (Ciliberto et al. 2016)
Let ∆ satisfy the SELF property with Y compact then, for every
measurable function h : X → F and d : F → Y, satisfying
d(z) = arg miny∈Y〈φ(y),Az〉F , we have:

ε(d ◦ h∗) = ε(f ∗)
ε(d ◦ h)− ε(f ∗) ≤ 2c∆

√
R(h)− R(h∗),

with ε(f ) = E[∆(Y , f (X ))] = E[〈φ(y),Aφ(y ′)〉F ] and
R(h) = E[‖h(X )− φ(Y )‖2

F ]
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Output Kernel Regression - squared loss - fits the SELF frame-
work

Trivial case: k(y , y) = 1 and `(ψ(y), h(x)) = ‖ψ(y)− h(x)‖2
HkY

.
Then :

f (x) = d ◦ h(x)
= arg min

y
‖ψ(y)− h(x)‖2

HkY

= arg min
y
− < ψ(y), h(x) >
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More about regularized least-squares regression: a reduced rank
approach

Let λ1, λ2 > 0 and p ∈ N∗. Let Pp be the set of the orthogonal
projections from Z to Z of rank p.

We consider the estimator x → Pĥλ2 (x) where P is defined as

P := argmin P∈PpE[‖Ph∗(x)− h∗(x)‖2
Z ]. (7)

Nevertheless, P is unknown, thus we estimate it with P̂ defined by

P̂ := argmin P∈Pp

1
n

n∑
i=1
‖Pĥλ1 (xi )− ĥλ1 (xi )‖2

Z . (8)

and we propose the estimator

ĥλ1,λ2,p(x) = P̂ĥλ2 (x) (9)

59



Reduced-rank regression in Structured Prediction

Novel estimator for IOKR in structured prediction (Z := HkY )

f̂ (x) = argmin y∈Y‖P̂ĥ(x)− ψ(y)‖2
Z . (10)

Algorithm ridge-IOKR Reduced-rank IOKR

Training O(n3) O(2n3)
Decoding O(ntestn|Y|) O(ntestp|Y|)

Table 2: Time complexity of IOKR versus reduced-rank IOKR.
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