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Abstract

Macroeconomic outcomes depend on the distribution of markups across firms and over time,

making firm-level markup estimates key for macroeconomic analysis. Methods to obtain these es-

timates require data on the prices that firms charge. Firm-level data with wide coverage, however,

primarily comes from financial statements, which lack information on prices. We use an analyti-

cal framework to show that trends in markups or the dispersion of markups across firms can still

be well-measured with such data. Measuring the average level of the markup does require pricing

data, and we propose a consistent estimator for such settings. We validate the analytical results

using simulations of a quantitative macroeconomic model and offer supporting evidence from

firm-level administrative production and pricing data. Our analysis supports the use of financial

data to measure trends in aggregate markups.
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1 Introduction

The markup of prices over marginal costs is a key variable in the macro-economy. Aggregate markups

determine the labor and capital share in national income. Dispersion in markups across firms affects

the efficiency of resource allocation. Variation in markups over the business cycle may explain real

effects of nominal shocks. To understand macroeconomic outcomes, economists must therefore

have a comprehensive picture of the distribution of firms’ markups across the economy and over

time. Yet neither prices nor marginal costs are observed in datasets at macroeconomists’ disposal.

This is because firm-level data with economy-wide coverage is nearly always derived from income

statements and balance sheets, which at most have information on assets, revenue and costs.

A sprawling literature in macroeconomics and international trade has relied on markup estimates

derived from such financial data, for example to quantify and test theories of imperfect competition

à la Atkeson and Burstein (2008) and Kimball (1995).1 A careful and quantitative assessment of the

accuracy of firm-level markup estimates from financial data is, however, lacking.

This paper assesses the degree to which markups can be recovered from data on financial state-

ments. We do so using an analytical framework, simulations of a quantitative macro model, and

empirical analyses using French firm-level production and pricing data. We find that dispersion of

markups across firms and trends over time can be well-estimated with financial data, provided that

firms share a common production technology. This is the case if production is Cobb-Douglas and,

more broadly, under empirically relevant conditions for more general production functions. Mea-

suring average markups, however, requires data on prices, unless researchers employ methods that

impose a demand system.

All parts of our analysis leverage the fact that, for cost-minimizing firms, markups equal the

wedge between the elasticity of a firm’s output with respect to a variable input–which firms set with-

out adjustment costs–and that input’s share in revenue (De Loecker and Warzynski 2012, Hall 1986,

1988). This is the production approach to markup estimation. As inputs’ revenue shares are observed

in financial statements, measuring the output elasticity is a main challenge when estimating firm-

level markups. This usually involves estimating a production function, as is done in the pioneering

paper by De Loecker and Warzynski (2012).

The paper starts with an analytical framework, in which we characterize the biases that arise from

a key issue when estimating markups using the production approach: financial statements only de-

tail firm revenues, not the quantity that they produce. This affects estimation of the variable input’s

output elasticity: if firms are price setters, revenue is not proportional to output, and hence revenue

cannot be used to consistently estimate the production function (Klette and Griliches 1996). When

1This literature has been fuelled by rising aggregate markup estimates over time (e.g., De Loecker et al. 2020, Díez et al.
2021). These papers study the aggregate cost of markup (Baqaee and Farhi 2019; Edmond et al. 2023), the role of markups
in inequality (Boar and Midrigan 2019), markup cyclicity (Hong 2017; Burstein et al. 2020), trade (Edmond et al. 2015;
Gaubert and Itskhoki 2021), the monetary policy transmission (Baqaee et al. 2021; Chiavari et al. 2021; Meier and Reinelt
2022), inflation dynamics (Kouvavas et al. 2021), or price stickiness (Wang and Werning 2022; Mongey 2017).
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revenue is used as a proxy for output, we show that the estimated output elasticities are biased by

the correlation between firms’ prices and the estimation’s instruments, which often include last pe-

riod’s inputs. In simple models, that correlation is pinned down by an average of the price elasticity

of demand. That average elasticity, in turn, determines average markups if firms are static profit

maximizers. As a result, the estimated average of the markups is not informative about the true av-

erage. We show, however, that variation in markups across firms or over time can still be accurately

measured, as long as firms have similar output elasticities. If firms differ in their output elastici-

ties, revenue-based markup estimates correlate with true markups, and we show that the correlation

approaches one if prices are orthogonal to the instruments.

These results appear at odds with the influential claim in Bond et al. (2021) that revenue-based

markups are uninformative about true markups. We explain that their reasoning may hold on av-

erage, in the sense that the average revenue-based markup is usually not informative of the true

average markup.2

The paper then validates these theoretical arguments through quantitative Monte Carlo simula-

tions. The simulations enable us to scrutinize markup estimates from financial statements, where

researchers lack data on prices, in a setting where true markups are known. We simulate a rich

macroeconomic model of oligopolistic competition à la Atkeson and Burstein (2008) with endoge-

nously heterogeneous markups. Firms differ in their fixed input and productivity, but share the same

translog production function. For standard calibrations of the parameters and for various robustness

calibrations, we find strong correlations between true markups and the various estimated markups.

In a perfect scenario where one has data on the firms’ quantity, markups are estimated with pre-

cision. In the practical scenario where researchers lack data on price and quantity, we still find a

correlation of 0.94 between estimated and true markups. The high correlation is driven by the fact

that in the full quantitative model, with various idiosyncratic and aggregate shocks, firms’ prices and

the instruments of the production function are close to orthogonal. Variation in markups – in the

cross-section and over time – is also well-estimated, in line with the analytical results.

Finally, we compare revenue- and quantity-based markup estimates using administrative data

on quantities and prices for French manufacturing firms. The data mostly validates the theoretical

results. We find a 0.63 correlation between revenue and quantity markups, rising to 0.80 in first dif-

ferences. These correlations are within sectors, consistent with the level of analysis in the theory

and simulations. As in the simulations, we find that correlations between prices and the estimation

instruments are low across all sectors. Binscatters show that revenue markups are good predictors

of quantity markups across the domain. Regression coefficients that relate revenue and quantity

2Bond et al. (2021) write “This approach uses the revenue elasticity for a flexible input, in place of the output elasticity”
and that the resultant markup is “(..) identically equal to one, and therefore contains no useful information about markups.”
Their conclusion and Appendix B.2. do note that it may be possible to study variation in markups without estimating
production functions (and thus without data on quantity), employing data on the variable input’s revenue share and firms’
overall input usage.
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markups to profits, labor- and market shares are also similar. Markup estimates do appear to be more

dispersed when based on quantity, possibly due to several empirical complications: firms may not

share identical production functions within sectors, for example, and functional forms for the pro-

duction function and productivity process may be misspecified. For aggregate markups in France,

we again find that the level is mismeasured when using revenue data. Trends over time, however, are

well-estimated, and largely robust to different ways of aggregating markups.

We consider various extensions. If the variable input is subject to further input wedges, we show

that markup estimates equal the product of markups and such wedges. The methods can also ac-

commodate quality differences across firms.

Overall, we conclude that firm-level estimates of markups from the production approach are in-

formative of true markups. However, our results do imply that researchers should give careful con-

sideration to the suitability of their data for the question at hand. When interested in the level of

markups, one generally needs quantity data. Revenue-based markups should not be used, for ex-

ample, to discipline parameters that govern aggregate markups. When interested in variation of

markups across firms or trends over time, revenue data will likely suffice.

Related literature. We contribute to the large and growing literature that uses firm-level markups

to understand the macroeconomic implications of imperfect competition. This literature relies on

firm-level markup estimates across the entire economy and on long time windows to quantify the-

oretical models. Recent examples include Baqaee and Farhi (2019) and Edmond et al. (2023), who

study the cost of markup dispersion, Boar and Midrigan (2019), who study the role of markups in

inequality, or Hong (2017) and Burstein et al. (2020), who study markups over the business cycle.3

We show that markup estimates from revenue data can be used to calibrate parameters relating to

markup dispersion or relative markups across firms, but not for parameters that govern the average

markup.

Methodologically, our paper relates most closely to work that estimates markups using the pro-

duction approach. This method originates from the sector-level estimator in Hall (1986, 1988), who

derives that the markup is equal to the wedge between a variable input’s output elasticity and the

input’s revenue share.4 In their seminal paper, De Loecker and Warzynski (2012) propose a general-

ized version of this estimator to measure firm-level markups, using production function estimation

to obtain the output elasticity. If that elasticity were known, a variable input’s revenue share suffices

to measure markups, leaving the choice of a variable input as the sole challenge.5 In practice, output

3Footnote 1 provides additional examples of recent papers.
4A significant body of the industrial organization literature, alternatively, derives markups from firms’ first-order con-

dition for pricing after estimating a demand system. This “demand approach”, which builds on Berry et al. (1995), enables
markup estimation at the product level. Recent contributions include Atalay et al. (2023), Döpper et al. (2022), Miller et al.
(2023) and Grieco et al. (2024). Macroeconomists often prefer the production approach, as it does not impose a demand
system.

5This methodology, deployed in recent papers including Burstein et al. (2020), Meier and Reinelt (2022), Calligaris et al.
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elasticities must be estimated – for which Ackerberg et al. (2015)’s method is typically used. This two-

stage procedure first purges output of measurement error and transitory productivity shocks, after

which the elasticities are identified using instruments.

Our paper is closely related to recent work that criticizes the use of these production function es-

timation techniques when estimating markups. Bond et al. (2021) and Doraszelski and Jaumandreu

(2021) point out that these techniques typically assume that firms are price takers – an unfortunate

assumption when estimating markups. For price-taking firms, revenue is proportional to output,

but price-setting firms must reduce prices when raising output. Revenue elasticities are thus gen-

erally lower than output elasticities (e.g., Klette and Griliches 1996), causing an underestimation of

markups (De Loecker and Warzynski 2012). This does not mean quantity data is necessarily better, as

quantities may be difficult to compare across firms due to product differentiation (De Loecker 2021).

A particularly strong critique is found in Bond et al. (2021), who claim that there is no information

about true markups in estimates that rely on revenue to estimate output elasticities. We explain

that this is only correct if the production function estimation delivers the revenue elasticity, which

is typically not the case. The average revenue-based markup is not informative of the true average,

but variation in markups is well-measured. This matters, as the paucity of price data as well, as the

limited number of settings in which firms’ quantities are comparable, means that Bond et al.’s claim

seriously limited the scope for future analysis of markups.

Bond et al. (2021) do note that there are applications in which it is possible to study markup varia-

tion across firms without estimating a production function. This uses the fact that output elasticities

are a function of inputs, and inputs can be added as controls in regressions. Our findings are com-

plementary, as we conclude that variation in revenue-based markup estimates can be relied upon

even in settings where it is not feasible to control for the output elasticities. Our results furthermore

preserve the credibility of important prior contributions in macroeconomics and international trade

that use revenue-based markup estimates to study variation in markups across firms and over time.6

A final issue is that production function estimates may be biased using Ackerberg et al. (2015)’s

procedure if firms are price setters, even with quantity data.7 Doraszelski and Jaumandreu (2019)

(2018) and De Ridder (2024), is a main alternative to markup estimators based on cost shares. A primary advantage is
that it imposes little structure on the production function, which cost-share approaches do. One advantage of cost-share
approaches is that they may be robust to factor-augmenting productivity – as is shown in Raval (2023a,b).

6De Loecker and Warzynski (2012) acknowledge that data on comparable quantities is needed to estimate average
output elasticities and markups with precision. Our paper provides closed-form expressions for biases that arise in the
absence of such data, as well as Monte Carlo and empirical evidence on the degree to which markup dispersion across firms
and over time remains well-measured. De Loecker (2011) notes that specifying a demand system can also address biases
in production function estimation due to missing firm-level price data. This solution is not suitable in a macroeconomic
context as it reduces the generality of the conditions under which the markup estimates are obtained.

7Ackerberg et al. (2015)’s method is an example of the control function approach, developed to estimate production
functions and productivity under perfect competition. The control function is a component of the purging regression,
where measurement error is identified as the residual from regressing output on observables. To ensure productivity is
not inadvertently purged, the observables must be an invertible function of productivity. The approach was pioneered by
Olley and Pakes (1996) using investment to control for productivity. Levinsohn and Petrin (2003) modify this approach
by proposing static controls (e.g., a variable input) to address the practical issue that observed investment is lumpy, and
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and Brand (2019) point out that an identifying assumption in Ackerberg et al. (2015) is that demand

faced by firms is not affected by unobservables other than productivity, which may not be true under

oligopolistic competition. We propose a change to the procedure’s first stage to address this.8 A

new paper by Ackerberg and De Loecker (2024) provides a detailed review of production function

estimation under imperfect competition.

2 Analytical framework

In this analytical section, we first discuss how Hall (1986, 1988) and De Loecker and Warzynski (2012)

relate markups to production functions. We follow the latter’s more general derivation, which ap-

plies at the firm level. We then outline challenges to production function estimation with commonly

available datasets if firms have market power. Finally, we derive expressions for the biases that arise

when revenue is used to approximate output, or in case of measurement error.

2.1 From Markups to Production Functions

The seminal papers by Hall (1986, 1988) and De Loecker and Warzynski (2012) propose a method

to estimate markups that relates markups to the production function. The idea is that markups can

be inferred from the wedge between the output elasticity of a variable input and that input’s share

in revenue. An input is variable if firms choose its use every period to minimize costs, without in-

tertemporal considerations or adjustment costs, taking the price of this input as given.

Formally, the outputYit for firm i at time t is given by the production functionYit = Y (Vit,Kit,Ωit),

where Vit is the variable input, purchased at priceWt. The vector Kit contains all other inputs, while

Ωit represents productivity. The first-order condition for the cost-minimizing firm with respect to Vit

is given by 1
ηit

= ∂Yit
∂Vit

1
Wt
, where ηit is the Lagrange multiplier of the production function constraint

and is equal to marginal costs. Multiplying both sides by price Pit yields the markup expression that

we use throughout the analysis:

µit = αit
PitYit
WtVit

, (1)

where µit ≡ Pit/ηit is the markup and αit =
∂Yit
∂Vit

Vit
Yit

is the output elasticity of Vit.

The expression yields the familiar result that an input’s output elasticity equals its revenue share

if markups are 1, while revenue shares fall short of the output elasticity when markups exceed 1. It

thus not an invertible function of productivity. Ackerberg et al. (2015) amend the procedure by identifying all coefficients
in the second stage rather than the first, addressing collinearity between productivity and variable inputs. We elaborate
in Section 2. A detailed discussion of the history of production function estimation, including a summary of practical
issues with early methods, can be found in Ackerberg et al. (2015). De Loecker and Syverson (2022) provide a careful
contemporaneous discussion, including a review of differences between control function approaches and dynamic panel
approaches (e.g. Blundell and Bond 2000) for production function estimation.

8We do need sufficient variation in input prices so that inputs and productivity are not colinear (Blundell and Bond
2000, Gandhi et al. 2020). Further discussion on markup estimation with accounting data is found in Traina (2018), Mor-
lacco (2019), Basu (2019), Syverson (2019), Yeh et al. (2022).
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follows that to estimate markups, researchers need data on revenue and input spending from the

income statement, as well as an estimate of αit, the output elasticity of Vit. Estimating this elasticity

under imperfect competition is thus a primary challenge in markup estimation.

It is worth noting that for inputs not conforming to the assumptions placed on Vit (i.e. adjustment

costs for capital or imperfections in the labor market), that input’s equivalent of equation (1) can be

used to calculate the overall input wedge, as defined by Hsieh and Klenow (2009). We discuss this

further in Section 2.4.

2.2 Estimating Markups with Revenue Data

We next introduce an analytical framework to analyze whether markups can be measured along (1)

when estimating αit using commonly available datasets. As these markups inform macroeconomic

and international trade theories, it is crucial for data to have economy-wide coverage, preferably over

long time horizons. Datasets meeting this bar are usually based on financial statements, where rev-

enue is the sole measure of output. As firms’ decisions influence prices under imperfect competition,

however, revenue may poorly approximate output.

2.2.1 When do Revenue-Based Markups Measure True Markups?

We first examine how accurately revenue-based markup estimates measure true markups, showing

that their correlation depends on the estimated output elasticity of the variable input. If the esti-

mated elasticity matches the true output elasticity, true markups are recovered; if it matches the

elasticity of revenue with respect to the variable input—the revenue elasticity—markup estimates

are orthogonal to true markups; if it falls between these elasticities, markup estimates positively cor-

relate with true markups.

To derive this, we introduce a simple demand system. Firms face a price-elasticity of demand
dyit
dpit

= −1/εit, where lower case letters denote the log deviation from a sample mean. The demand

elasticity can be heterogeneous across firms and over time. Firms that maximize profits period-by-

period in the face of this demand will charge a markup µit = (1− εit)
−1. This is the standard inverse

elasticity rule that describes how firms set prices in static models of oligopolistic or monopolistic

competition. The demand system gives us the elasticity of revenue Rit = PitYit with respect to Vit as
drit
dvit

= dpit
dyit

dyit
dvit

+ dyit
dvit

= (1− εit)αit.

With true markups delivered by the demand system, we can now derive the correlation between

true markups and revenue-based markup estimates. These estimates use equation (1), where the

output elasticity αit is replaced by the estimated elasticity on revenue data, α̂it. The literature has

developed techniques to estimate parameters of a production function with firm data. When such

techniques use revenue in place of quantity data, the production function parameters (and hence

α̂it) are biased (Klette and Griliches 1996). The bias is a function of the joint distribution of inputs
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and of the elasticities of both demand and output, as we show in Section 2.2.2. Hence, revenue-based

markup estimates read as

µ̂Rit ≡ α̂it
PitYit
WtVit

=
α̂it

αit
αit

PitYit
WtVit

=
α̂it

αit(1− εit)
=
α̂it

αit
µit. (2)

This elucidates the relationship between true and estimated markups, and true and estimated output

elasticities. The final equality confirms that if the estimated elasticity α̂it equals the true elasticity,

revenue-based markups recover true markups. The penultimate equality shows that the revenue-

based estimates µ̂Rit can correlate with true markups µit as long as α̂it is different from the revenue

elasticity αit(1−εit). In such cases, Cov
[
logµit, log µ̂

R
it

]
̸= 0. However, if markups are computed using

the true revenue elasticity αit(1− εit) in place of αit, we have

µ̂RE
it ≡ (1− εit)αit

PitYit
WtVit

= (1− εit)µit =
1− εit
1− εit

= 1.

That is, the markup estimates would be identically equal to one and would be orthogonal to true

markups: Cov
[
logµit, log µ̂

RE
it

]
= 0, as in Bond et al. (2021).

2.2.2 Estimating the Output Elasticity with Revenue Data

We next show that, in practice, estimating a parametric production function using revenue instead

of quantity yields neither the revenue nor the output elasticity, as long as firms have heterogeneous

markups. Rather, the estimate of the output elasticity α̂it that one obtains when using revenue in-

stead of quantity data suffers from an omitted variable bias. When quantity is used to estimate the

production function, the output elasticity can be consistently estimated using standard tools, as we

discuss in the appendix.9 Below, use a simple analytical framework to derive the omitted variable

bias that arises when using revenue instead.

Consider a set of firms in a single sector. Output Yit is log-linear in a single variable input Vit,

while productivity is identically and independently distributed across firms and time. Productivity

is unobserved by the researcher but observed by the firm. Firms set Vit and share the same Cobb-

Douglas production function

yit = αvit + ωit, (3)

where lower caps denote log-deviations from the mean, and where α is the true output elasticity

of vit to be estimated.10 This simple environment allows us to keep the argument as transparent

as possible and to derive clear closed-form solutions. Despite the simplicity, the intuitions extend

to more general models that are standard in the literature. In Section 2.2.4, for example, we study

9We show that an IV-GMM estimator is consistent and recovers the output elasticity for the simple analytical framework
(Appendix A.1) and in more general cases (Appendix A.4).

10To be precise, xit = logXit − E [logXit], where E [logXit] is the limit of the sample average. This normalization gets
rid of constants in the production function and ensures that ωit is mean zero.
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the case of a translog production function where the output elasticity is heterogeneous across firms.

Appendix A.4 furthermore extends the results by allowing for multiple inputs (A.4.2), persistence in

productivity (A.4.3), and all of these together (A.4.4).11

Turning to the estimation of α, a least-squares regression of input vit on output yit will be bi-

ased even if output is observed. This is because productivity affects a firm’s input choices and is

unobserved to the econometrician, and is thus in the residual. The production function estimation

literature, such as Blundell and Bond (2000) or Ackerberg et al. (2015), identifies α by instrumenting

vit by its lag vit−1. In our setup, since productivity is i.i.d., vit−1 is not in the same information set

and thus is orthogonal to ωit.12 The instrument therefore satisfies the exclusion restriction. For in-

strument relevance, we also need vit to be persistent over time. This might arise through persistence

in input price Wt. Gandhi et al. (2020) note that under perfect competition, this is the sole driver of

persistence, so that long time samples are required for identification. We show that under imperfect

competition (the natural setting when estimating markups), it is easier to obtain persistence in vit, as

a firm’s persistent set of competitors affects its demand for inputs (Appendix A.1). Hence the output

elasticity α can be identified.

When estimating the production function with revenue data, one obtains a biased estimate of α.

To show this, let us construct an instrumental variable estimator based on the generalized method

of moments (IV-GMM) when revenue is used in place of quantity. We focus on infinite samples to

abstract from finite-sample variation. Hence, E [xit] denotes the limit in probability of the sample

average of a variable xit as the sample size goes to infinity.13 We thus focus on consistency of the

estimator. Revenue is quantity times price, such that rit = yit + pit is revenue in log-deviations from

the mean. Furthermore, inserting production function (3) for yit yields rit = yit+pit = αvit+ωit+pit,

where α remains the parameter of interest. If a researcher were to use an IV-GMM estimator that is

consistent for quantity, but uses revenue as the dependent variable instead, that estimator would be

defined as follows:

Definition 1 (Revenue IV-GMM estimator) The estimator is α̂ ∈ R such that moment E[t̂fpritvit−1] is

zero, where t̂fprit = pit + yit − α̂vit = (α− α̂)vit + pit + ωit.

Without loss of generality we treat α̂ as a non-random real number. Formally, α̂ is a random vari-

able which is almost surely equal to a constant. Solving for α̂ such that 0 = E[t̂fpritvit−1] = (α −
11Appendix A.4.3 notes that if productivity has persistence ρ, identification may only hold locally. In particular, there are

exactly two solutions to the IV-GMM estimator. One matches the true parameters, while the second is a biased estimate of
the true parameters. This is in line with recent work by Ackerberg et al. (2020), who show independently that the two-stage
estimator may have two solutions, rendering standard numerical solvers unstable. However, in our framework, we show
that if Var[vit−1] is large compared to Var[ωit−1] and Var[vit − ρvit−1], then there exists a unique solution for α̂ and ρ̂.
Hence, if there is enough variation in the data, the production function is globally identified.

12Appendix A.4.3 notes that when productivity is persistent, e.g. when it is AR(1), vit−1 is still a valid instrument if the
moment condition is for vit−1 to be orthogonal to innovations of productivity. A similar argument applies there: vit−1 is
not in the same information set as the time t innovations.

13By the weak law of large numbers, under independence of the xit, E [xit] ≡ plim 1
N

∑
it xit also denotes the expected

value of xit. Appendix A.2 derives the estimator for a finite size sample of firms.
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α̂)E [vitvit−1] + E [pitvit−1], yields a unique solution as long as the lagged variable input is a relevant

instrument (that is, E [vitvit−1] ̸= 0):

α̂ = α+
E [pitvit−1]

E [vitvit−1]
. (4)

The estimator is clearly not consistent if prices and lagged variable inputs covary, i.e. E [pitvit−1] ̸= 0.

Using revenue to measure output creates an omitted variable bias: the revenue-production func-

tion has prices in the residual, as first pointed out by Klette and Griliches (1996) and discussed in

De Loecker et al. (2016).

Under perfect competition, the correlation between price and lagged inputs is zero, as firms are

atomistic price takers. Under imperfect competition, it is probable that pit will correlate with lagged

variable inputs, such that E [pitvit−1] differs from zero. Note that there are no model-free constraints

on either the size or sign of the covariance. If firms face persistent aggregate demand shocks and

decreasing returns to scale, for example, positive shocks drive up marginal costs and prices, causing

a positive correlation between prices and lagged variable inputs. Conversely, firms with downward-

sloping demand curves reduce prices to sell additional output, causing a negative correlation. The

estimates of α can therefore be smaller, larger or equal to the true output elasticity. Equally, the

ensuing markup estimates may overstate, understate or equal true markups.

2.2.3 Revenue-Based Markup Estimates

We next show that, even when biased, revenue-based markup estimates are still informative about

true markups. The bias in the estimated elasticity in equation (4) is, in part, determined by the de-

mand system – and so to show this, we re-introduce a demand side to our baseline framework. We

assume a general invertible demand system, where a firm’s demand depends on prices of all firms.

Formally, the vector of quantities produced by all firms, {Yit}, is a function of the price vector {Pit}
such that {Yit} = Dt({Pit}). A log-linear approximation yields

pit = −
∑

jεijtyjt, (5)

where εijt is the cross-elasticity of firm i’s price to firm j’s quantity. For now, we abstract from

aggregate shocks that alter price-quantity relationships across periods, and hence focus on the bias

caused by downward-sloping demand curves.

With this demand system, the revenue elasticity of the variable input, taking other firms’ output

as given, is drit
dvit

= α(1− εiit). The variable input vit can be used to compute markups along eq. (1); as

firms share a common output elasticity α, true markups equal µit = α(PitYit)/(WtVit). The estimated

elasticity, substituting demand system (5) into eq. (4) and using production function (3), is given by

α̂ = α

(
1−

∑
j

E
[
εijt(vjt+

ωjt
α

)vit−1

]
E[vitvit−1]

)
.

10



The ratio of the true output elasticity and the revenue-based estimated elasticity is equal to one mi-

nus the weighted average of inverse demand elasticities and cross-elasticities among the firms shar-

ing the same production function. Importantly, the estimated elasticity α̂ differs, generally, from the

revenue elasticity α(1− εiit). This implies that the revenue markup is different from one, as in eq. (2).

Indeed, firm-level markup estimates based on revenue data, µ̂Rit = α̂PitYit
WtVit

, are

µ̂Rit = µit

(
1−

∑
j

E
[
εijt(vjt+

ωjt
α

)vit−1

]
E[vitvit−1]

)
.

This shows that revenue-based markup estimates are equal to true markups up to a constant, as

the second term in parenthesis is not firm-specific (the E takes an average over i). The true and

estimated revenue log markups have equal variances and the correlation between the estimates and

true markups is one.

The result that revenue and quantity markups perfectly correlate depends on the Cobb-Douglas

assumption that output elasticity is constant. The bias is a constant, and thus does not cancel out

variation in markups. In Section 2.2.4 we discuss the case of variable output elasticities and show

that the core insights remain: variation in the bias does not cancel out variation in markups.

Case I: heterogeneous demand elasticities. The result that revenue-based estimates of the markup

perfectly covary is only useful if markups are variable across firms. In our simple demand sys-

tem, in which firms set prices to maximize contemporaneous profits, firms will have heterogeneous

markups if they are subject to heterogeneous price elasticities of demand. For this case, it is straight-

forward to derive that all dispersion in the markup is preserved, but mean markups may be suffi-

ciently biased such that no information about the true average remains.

To see this, start from the demand system in equation (5), with the additional assumption that for

all pairs of firms i, j with i ̸= j, εijt = 0 while εiit ̸= 0 and εiit ̸= εjjt. Thus, demand is determined by

firms’ own supply, and firms face heterogeneous demand elasticities. Formally, the demand system

is such that pit = −εityit where, with some abuse of notation, we denote εit ≡ εiit as the own inverse

price elasticity. When firms maximize profits, they charge a markup µit = (1− εit)
−1.

Under these assumptions, revenue IV-GMM estimators give the average revenue elasticity among

firms sharing a production function. This differs from each firm’s own revenue elasticity, because

firms have different demand elasticities: 14

α̂ = E
[
α(1− εit)

vitvit−1

E [vitvit−1]

]
̸= ∂rit

∂vit
= α(1− εit). (6)

Turning to the resultant markup estimates along equation (1) and for markups µit = (1 − εit)
−1

14This assumes that E [εitωitvit−1] = 0. This assumption is satisfied (for example) when, conditional on vit−1, produc-
tivity ωit and elasticity εit are orthogonal or, alternatively, when conditional on εit, ωit and vit−1 are orthogonal. We make
this assumption merely to clarify the argument.
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that maximize profits, we get:

µ̂Rit ≡ α̂
PitYit
WtVit

= E
[
µ−1
it

vitvit−1

E[vitvit−1]

]
µit. (7)

As in the previous case, the revenue-based markup estimates equal the true markups up to a

constant. For our simple demand system, this constant is equal to the weighted average of inverse

markup among firms sharing the same production function. Given the assumption that two firms i

and j have different markups, the estimated revenue markup µ̂Rit is different from one. However, the

average of the estimated revenue markup is not informative about the average true markup. Indeed,

the average estimated revenue markup can be written as

E
[
µ̂Rit
]
= E

[
µ−1
it

vitvit−1

E[vitvit−1]

]
E [µit] ,

which equals one up to a Jensen’s inequality. Revenue markups thus carry no information about

the true average in this demand system. We conclude that using revenue data instead of quantity

data does not allow us to recover the level of markups but allows us to recover variation in markups,

if variation exists.

Case II: homogenous demand elasticities. There is one case where revenue-based markup es-

timates do not contain any useful information about true markups. This is when firms compete

monopolistically and have identical price-elasticities of demand such that pit = −γyit. This as-

sumption is satisfied by constant elasticity of substitution (CES) preferences with atomistic firms

if the aggregate price index is fixed. In that case, the revenue estimator equals the revenue elasticity

α̂ = α(1− γ) = ∂yit
∂vit

(1 + ∂pit
∂yit

) = ∂rit
∂vit

. Both the revenue elasticity and the true markup are equal across

firms, where the latter is equal to (1−γ)−1. It follows that revenue-based markup estimates are iden-

tically equal to one µ̂Rit = (1− γ)−1(1− γ) = 1, as in Bond et al. (2021). If markups are identical across

firms, revenue markups thus do not yield any information on true markups.

2.2.4 Beyond Constant Output Elasticities

The analysis thus far assumes that firms have equal output elasticities. We next study the more gen-

eral case where the output elasticity depends on firms’ input choices, by assuming that the produc-

tion function is translog. The translog production function nests Cobb-Douglas and is a second-

order approximation of any production function. In our one-input environment, the function is

given by

yit = αvit + βv2it + ωit, so that αit ≡
∂yit
∂vit

= α+ 2βvit. (8)

As for the case where firms have equal output elasticities, the bias from using revenue instead of

quantity depends on the correlation between prices and the instruments in the production function
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estimation, which are typically the lags of vit and v2it. As we derive in Appendix A.5, the revenue IV-

GMM estimator gives α̂

β̂

 =

 α

β

+ V −1

 E[pitvit−1]

E[pitv2it−1]

 , with V =

 E[vitvit−1] E[v2itvit−1]

E[vitv2it−1] E[v2itv2it−1]

 .

If prices are orthogonal to the instruments, the second term disappears and the estimates are con-

sistent. If either the lagged variable input or its square is correlated with prices, both parameters are

biased, as is the estimated elasticity α̂it = α̂+2β̂vit. Inserting this into equation (1) gives the revenue

markup:

µ̂Rit = (1 + f(vit))µit where f(vit) =
(α̂− α) + 2(β̂ − β)vit

α+ 2βvit
,

which equals true markups multiplied by a function of firms’ own input usage. If prices are orthogo-

nal to the instruments, markups are accurately estimated.

As for the case of constant output elasticities, we can impose a demand system to shed more light

on what might drive a correlation between prices and instruments, and how that affects both the

level and dispersion of markup estimates.

Case I: heterogeneous demand elasticities. If firms have heterogeneous demand elasticities and

face the previously specified demand system, pit = −εityit, variation in markups can be accurately

measured if both vit and the instruments are orthogonal to εit. In that case, we get (α̂, β̂) = (1 −
E [εit])(α, β). The markup estimates equal µRit = (1 − E [εit])µit and have a correlation of 1 with true

markups. Derivations are provided in Appendix A.5. The average markup will be uninformative of

the true average, however, as in the case of constant output elasticities.

We should note, however, that vit is not necessarily orthogonal to the demand elasticity εit. In

macroeconomic models such as Atkeson and Burstein (2008) and Kimball (1995), for example, large

firms have lower demand elasticities. This means that the correlation between revenue-based markup

estimates and true markups may be below 1. Even in those settings, however, the prices and instru-

ments may be close to orthogonal because prices are determined by a combination of returns to

scale, a firm’s direct competitors, aggregate demand conditions, and factor prices. The extent to

which revenue markups and true markups correlate is thus a quantitative question that we answer

with simulations in Section 4 and empirically in Section 5. In both, we find high correlations between

revenue and true markups, and negligible correlations between prices and instruments.

Case II: homogeneous demand elasticities. Revenue markups are uninformative of true markups,

µ̂Rit = 1, if firms have homogeneous demand elasticities (i.e. pit = −γyit). The logic extends from

the constant output elasticity case: the average output elasticity from revenue data is biased by the

demand elasticity, which also determines the markup. Appendix A.5 provides a formal derivation.
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2.2.5 Analyzing Markup Variation without Estimating Production Functions

We should note that there are research designs in which variation in markups can be analyzed with-

out estimating the production function, rendering a lack of quantity data inconsequential (De Loecker

and Warzynski 2012, Bond et al. 2021). This still leverages the insight from the production approach

to markup estimation that markups are given by the product of the inverse revenue share of a variable

input, PitYit/(WtVit), and that input’s output elasticity, αit. If the output elasticity is some function

of observables hit, such that αit = α(hit), the output elasticity can be controlled for and variation

in the input’s revenue share can be used to assess variation in markups. For example, if markups are

such that lnµit = γ + βXit + ϵit and β is of interest, one can substitute-out the markup and run

ln PitYit/(WtVit) = − lnα(hit) + γ + βXit + ϵit.

This is feasible, as for many production functions (including translog), the output elasticity is a func-

tion of inputs. As PitYit/(WtVit) is observed in the data, adding controls for inputs in a sufficiently

flexible functional form enables one to estimate β without knowledge of the production function.

This does have limitations. It is infeasible to control for input usage, e.g., if one is interested in the re-

lationship between markups and firm size. The same holds for other analyses that macroeconomists

often perform with markups, such as measuring misallocation, or within-between firm decomposi-

tions of markup trends over time.

2.3 Markups, Productivity, and Measurement Errors

After studying how the use of revenue instead of quantity data affects the estimation of markups, we

now focus on the case where output data is available but imperfectly measured. Specifically, we now

assume that output is observed as ỹit = αvit+ωit+ηit,where ỹit is observed quantity (while yit is true

quantity), ωit is the productivity observed by the firm, and ηit is measurement error and white noise

productivity shocks that firms observe after making production decisions.

Prior work pays specific attention to ηit, for three reasons. First, observed output can contain sig-

nificant measurement error. In our empirics, for example, we measure output by dividing revenue by

unit values, which are in turn obtained from surveys. Second, the presence of ηit impedes estimating

true productivity ωit: even if the production function parameters are known, one can only recover

productivity with measurement error, ωit + ηit. Third, measurement errors complicate production

function estimation when ωit follows a nonlinear process.

Below, we explain that one can either estimate the production function with greater standard er-

rors, or purge measurement error in a first-stage regression.

Retaining Measurement Errors. In the presence of measurement errors ηit, one can still use the

standard IV-GMM estimator to estimate the production function (Blundell and Bond 2000). This is

the procedure proposed by Doraszelski and Jaumandreu (2019, 2021). In Appendix A.3 we show that,
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in our simple framework, the estimator remains consistent. Note, however, that for a finite-sized

sample, the estimator’s asymptotic variance is proportional to E
[
ω2
it

]
+ E

[
η2it
]
. This means that the

estimator’s variance increases in measurement errors’ variance.

The main drawback is that this procedure cannot recover productivity. To see this, note that

productivity is measured as the difference between output and the product of all inputs and their

estimated output elasticities. For our framework, this is ỹit−αvit = ωit+ηit. This correlates with true

productivity, but the correlation fades as the ratio of variance of measurement error to productivity

increases.

In Appendix A.3, we furthermore discuss that measurement error can also impede consistency

of the IV-GMM estimator if ωit is persistent with non-linear autoregressive terms (Bond et al. 2021,

Ackerberg and De Loecker 2024). In our quantitative analysis we further explore the impact of ab-

stracting from measurement errors in estimating the production function and markups.

Purging Measurement Error from Quantity. The combination of the loss of direct estimates for true

productivity ωit, higher standard errors, and stringent assumptions on the dynamic process of ωit

form a case to purge observed output from measurement error. Ackerberg et al. (2015) do so in a

first-stage purging regression for the case of perfect competition. We propose a procedure that –

deviating minimally from theirs – can accomplish purging under imperfect competition.

The purging regression aims to separate ηit andωit, using the fact that firms only observeωit when

deciding the quantity of inputs that they wish to deploy. The idea is that the demand for the variable

input can therefore be expressed as a function of productivity: vit = v(ωit,Ξit), where Ξit is a vector

of all variables that determine vit other than productivity. Under the assumption that vit rises mono-

tonically in ωit, the demand function can be inverted, such that ωit = v−1(vit,Ξit). This function is

often called the control function, as in Olley and Pakes (1996), Levinsohn and Petrin (2003), or Acker-

berg et al. (2015). Previous literature on the control function approach is summarized in footnote

7. In our framework, the observed output can therefore be written as ỹit = αvit + v−1(vit,Ξit) + ηit.

The fitted values of a non-parametric regression of ỹit on vit and Ξit therefore identify ηit, as long as

Ξit contains all variables that determine the demand for vit.15 The fitted values can then be used to

construct moment E [ω̂itvit−1], a function of α̂. The α̂ that sets this moment to zero is a consistent

estimator of the true α.

What variables are included in Ξit under imperfect competition? As noted by De Loecker and

Warzynski (2012) and De Loecker and Syverson (2022), the determinants of vit depend on the setting

that is considered, including the competition that firms face. In our framework, one can readily find

the variables in Ξit from the firm’s cost-minimization problem. Inverting the demand function gives

ωit = (1−α)vit−mcit+wt. It follows that factor prices and (controls for) log marginal costs should be

15Our vector Ξit corresponds to the vector z in De Loecker and Warzynski (2012).
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included in Ξit. Given that marginal costs can be expressed in terms of prices and markups, observed

output can be written as16

ỹit = vit − pit + logµit + wt + ηit. (9)

To purge for measurement error, researchers must thus regress observed output on the variable

input, prices, markups, and time-fixed effects for wt.17 Under perfect competition, firms are price

takers and have log markups of 0. Hence, a first-stage regression of output on vit and time fixed effects

is sufficient to purge for measurement error.18 Under imperfect competition this is not sufficient, as

firms have heterogeneous markups. As noted by Doraszelski and Jaumandreu (2019, 2021), control-

ling for markups is infeasible – as the whole purpose of the exercise is to estimate these markups. This

is the so-called inversion problem. We propose resolving this by including price and controls for the

markup in the first stage of the procedure. Note that when controlling for markups, we only need to

know that there is a structural relationship between markup and controls; we do not need to know

the parameters that govern this relationship. One potential control, which we use for the rest of the

paper, is market share. We do so because this is consistent with the growing literature in macroeco-

nomics and international trade that builds on Atkeson and Burstein (2008) or Kimball (1995), where

markups are determined by market share. When disciplining such models with firm-level markup

estimates, inserting market share in a first stage is thus internally consistent. Note that market share

is not a perfect control for markup and demand conditions in every case – in many industrial or-

ganization models, market share does not control for markups (see, e.g., seminal contributions in

empirical IO such as Berry et al. 1995 or Foster et al. 2008).

In summary, the production approach can still be used to estimate markups when output is ob-

served with error. Measurement error affects only estimation of the output elasticity, not the ap-

proach in general. One strategy is to purge error in the first stage of a two-stage procedure. Alter-

natively, the Blundell and Bond (2000) estimator can be used as before, at the expense of greater

standard errors. From Section 3, we evaluate these methods with simulations and empirical data.

2.4 Theoretical Extensions

Finally, we use the framework to cover two extensions. Readers initially interested in the main argu-

ment may opt to skip these and proceed to Section 3.

16Note that the expression of the marginal cost MCit = Pit/µit in log deviation from its meanmcit is equal to pit−logµit

up to a constant E [logµit], which we include in the first stage.
17For general multi-input, non-Cobb-Douglas cases, the cost-minimization first-order condition is not linear in inputs

and cannot be inverted analytically. Nevertheless, the relationship between ωit and inputs, price and markups is well-
defined and can be approximated by a polynomial of inputs.

18As firms are price takers and have a markup of one, the observed output (after substituting the expression for produc-
tivity) under perfect competition reduces to ỹit = vit +wt + ηit − pit. The last two terms are orthogonal to inputs, vit, and
input price wt.
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2.4.1 Wedges

Macroeconomists often study markups in conjunction with other distortions that create wedges be-

tween an input’s marginal products and its factor price. Below, we first discuss the extent to which

our tools allow any kind of input wedge to be identified, and then discuss how wedges affect the

measurement of markups.

Following Hsieh and Klenow (2009), we introduce two wedges in the framework: a non-markup

output wedge τit and an input wedge λit. In the context of our analytical framework, these affect

the firm’s perceived profits π̃it as follows: π̃it = τitPitYit − λitWtVit. Both are wedges because they

prevent firms from equating marginal revenue products to factor prices. Rather, optimizing firms

equate marginal revenue products to the factor price net of wedges: ∂PitYit
∂Vit

=Wt
λit
τit

.

If the variable input is subject to the additional input wedge λit, our tools identify the complete

wedge λitµit rather than the markup. Inserting the input price distortion into the cost-minimization

problem in Section 2.1, the markup equation (1) in the presence of the input price distortion reads

µitλit = αit
PitYit
WtVit

. (10)

Thus, if markups are measured along (1), the estimated markups are the product of the true

markup and the input wedge.19 Researchers solely interested in measuring markups should thus,

if they observe multiple variable inputs, calculate markups using the input that is the least likely to

be subject to input wedges.

Output wedge τit cannot be estimated using our tools and will not distort the measurement of

markups, assuming researchers observe actual revenue PitYit and not τitPitYit. Intuitively, (1) is de-

rived from firms’ cost-minimization problem rather than from profit maximization, and revenue

does not appear in the former. This is why τit does not appear in (10), either. Output wedges can

distort markup estimation if researchers observe PitYitτ̂it, where τ̂it is an output wedge that directly

affects measured revenue. The markup estimate is µitτ̂itλit = αit
PitYitτ̂it
WtVit

.

In practice, revenue is usually well-measured and output wedges are implicit, e.g. they reflect

the fact that firms face financing or regulatory constraints that prevent them from achieving their

optimal scale. Output wedges are therefore less likely to obfuscate markup estimation than input

wedges are.20

Finally, note that wedges on inputs other than Vit do not affect the measurement of markups,

but these wedges can be estimated using our tools. To see this, consider the case where the firm

maximizes profits πit = PitYit −WtVit − λKit P
K
t Kit, where Kit is an additional input, with factor price

19Morlacco (2019) uses this property to identify markdowns in the input market for French manufacturing firms.
Hashemi et al. (2022) note that if firms have constant markups and when output elasticities are replaced by revenue elas-
ticities, (1) measures input wedges rather than markups.

20It is tempting to think that (1) measures the product of all output and input wedges as the marginal product isαYit/Vit;
hence, the wedge between the marginal product and Wt is αYit/(WtVit). That wedge does not equal (1), however, as (1)
has revenue rather than output in the numerator.
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PK
t , which is subject to the input wedge λKit . The new wedge does not alter markup estimates because

equation (1) is derived from cost minimization with respect to Vit, in which terms withKit drop. One

could, however, use the markup equation to identify λKit if it was the object of interest. After using the

production function estimation tools to identify output elasticity αK
it , the wedge could be calculated

as λKit =
αK
it

αit

PK
t Kit

WtVit
.

2.4.2 Quality Differences

An alternative concern, even with quantity data, is that firms within an industry may produce goods

of varying quality. If these firms do not share a common production function, one must estimate sep-

arate production functions by (often unobserved) quality. A more common assumption, however, is

that quality raises demand, as consumers derive greater utility from better products.21 We consider

the case where quality affects only demand, and where it also impacts costs.

Quality as a demand shifter. If quality affects demand but not marginal costs, as in endogenous

growth models, quality differences have limited effects on production function and markup estima-

tion. To see this, assume that demand is a function of price pit and quality qit; i.e. yit = d(pit, qit). For

ease of exposition, keep the simple production function yit = αvit + ωit, with i.i.d. productivity ωit. If

output is measured without error, the standard IV-GMM estimator that relies on moment condition

E [ω̂itvit−1] = 0, where ω̂it = yit − α̂vit, still delivers a consistent estimate of α. This is obvious, as the

proof for consistency of this estimator makes no assumptions on the demand system that firms face

(see Appendix A.1).

Turning to the case where output is measured with an error ηit, quality could affect identification

of the production function, but only if researchers purge the error using the two-stage procedure. If

researchers deploy an estimator that does not purge errors (i.e. Blundell and Bond 2000), standard

moment conditions still deliver a consistent estimate of α. This is unchanged from the previous

results as, again, the consistency derivations do not rely on assumptions on demand.

Quality differences may be more problematic if researchers purge ηit. Doing so requires that

firms’ demand for the variable input is an invertible function of productivity, vit = v(ωit,Ξit). If qual-

ity affects firms’ variable input demand as part of Ξit, one must control for quality to assure that the

function can be inverted, ωit = v−1(vit,Ξit), to run the purging regression ỹit = αvit+v
−1(vit,Ξit)+ηit.

In our analytical framework, additional quality controls are only necessary if quality affects firms’

markups. This is because v−1(vit,Ξit) = (1− α)vit − pit + logµit +wt, as we show in Section 2.3 with-

out making assumptions on demand. Markups may depend on quality (e.g., because high-income

households demand higher-quality products), and have lower demand elasticities (Nord 2023). The

first-stage regression of observed quantity on vit, price pit, and time-fixed effects for wt, then needs

21Endogenous growth models, for instance, posit that innovation improves product quality, enhancing long-run welfare
(e.g., Grossman and Helpman 1991, Aghion et al. 2022).
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additional controls for quality to cover the markup µit. If quality is constant over time – as is com-

monly assumed in demand estimations following Nevo (2001) – adding firm-fixed effects to the first

stage suffices to consistently purge ηit. In settings where quality’s effect on markups is less easily

controlled for, it is prudent to use Blundell and Bond (2000)’s approach instead.

Quality that raises costs and demand. As firms within an industry have common parameters of the

production function, quality differences that raise the cost of production are akin to lower produc-

tivity: higher-quality products require more inputs to produce the same output quantity. Below we

show that when researchers apply standard production function methods, the implicit assumption

is that quality-adjusted productivity ωit − qit has the same stochastic process as ωit.22 To see this,

assume that yit is still a firm’s quantity of output, unadjusted for quality. The production function

now reads as yit = ωit − qit + αvit.

If output is observed without measurement error, the IV-GMM estimator is consistent if the mo-

ment condition that held for productivity in fact holds for the sum of quality and productivity. For-

mally, the moment condition E [ω̂itvit−1] = 0 will now have ω̂it = ωit − qit − (α̂ − α)vit. The solution

to the estimator is given by

α̂ = α− E [qitvit−1]

E [vitvit−1]
.

The IV-GMM estimator is therefore consistent if quality is orthogonal to the instrument, E [qitvit−1] =

0, which is the assumption that we usually impose on technological productivity, ωit. If one applies

the estimator to firms with heterogeneous cost-raising qualities, one thus assumes that the stochastic

process of quality-adjusted productivity is the same as the process assumed for ωit under homoge-

neous quality. This holds regardless of whether quality affects demand.

If output is measured with error, the IV-GMM estimator can be applied at the expense of greater

standard errors. For a two-step estimator, our derivations for cases in which quality is just a demand

shifter can readily be applied. There is only a change in labels: where the first stage had to control for

productivity, it must now control for quality-adjusted productivity. Inverting variable input demand,

we get ωit − qit = (1 − α)vit − pit + logµit + wt. The purging regression is therefore unchanged from

the case in which quality is only a demand shifter.

3 Data

The remainder of the paper scrutinizes the theoretical predictions from Section 2 with rich quanti-

tative simulations and empirical data. We use data on French manufacturing firms, both to quantify

22There is a separate body of work on how to consistently measure “technological productivity” ωit in the presence of
quality differences. Key contributions include Verhoogen (2008), Kugler and Verhoogen (2012), and De Roux et al. (2021).
Hahn (2024) provides a recent review. An alternative setup, where quality raises both demand and input prices, is studied
in De Loecker et al. (2016).
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the simulations and for the empirical analysis. We combine FARE (Fichier Approaché des Résultats

d’Esane), which has detailed financial statements, with EAP (Enquête Annuelle de Production), which

provides product-level revenues and quantities. The sample is from 2009 to 2019. FARE covers the

universe of non-financial firms and originates from filings to the tax administration (DGFiP). EAP is

a product-level survey by the statistical office (INSEE), covering all manufacturing firms with at least

20 employees or 5 million euros in revenue. We detail the data construction in Appendix G.

We obtain quantities and prices from EAP, which details a firm’s revenue and quantity produced at

the level of 10-digit products. For each firm-product we calculate the ratio of revenue over the quan-

tity of the product sold. We then standardize this unit value by dividing it by the revenue-weighted

average price of the 10-digit product across the sample. As some firms produce multiple products,

we define a firm’s price as the sales-weighted average of standardized prices across the goods that it

produces. Quantity is the ratio of revenue over this price.23

We obtain the remainder of the variables from FARE. These are revenue, wage bill, capital, spend-

ing on purchased services and spending on purchased materials (the latter including physical inter-

mediate goods and raw materials). Our sample is the intersection of FARE and EAP. We drop firms

with missing, zero or negative values for any of the variables, and deflate nominal variables using

EU-KLEMS deflators.24 Summary statistics are given in Appendix Tables 12 and 13.

4 Simulation

We first assess markup estimates in rich quantitative Monte Carlo simulations in a leading macroe-

conomic model, to scrutinize the estimates in a setting where true markups are known. We use a

model that nests and generalizes the analytical framework and that adds an explicit, rich, demand

system. We quantify the model using standard parameters and various robustness calibrations in

order to assess the quantitative robustness of the analytical conclusions in broad settings.

The simulated model is based on Atkeson and Burstein (2008), where firms face double-nested

CES demand and compete à la Cournot. The profit-maximizing markup for firm i in market h at time

t is a function of a firm’s market share siht:

µiht =
ε

ε− 1

(
1−

ε
σ − 1

ε− 1
siht

)−1

where ε is the elasticity of substitution within narrow markets, and σ is the elasticity of substitution

across markets. Under the assumption that goods are easier to substitute within markets than across

markets (e.g. because goods within a market are more similar), this yields that markups rise in firms’

23As a robustness check we standardize prices using the revenue-weighted average price at the 8-digit sector level.
These firm-level prices have a 0.89 correlation with our baseline prices.

24As in the analytical model, we assume that firms within sectors face identical factor prices. De Loecker et al. (2016)
offer a markup estimation method for firms with heterogeneous input prices.
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market shares.

Firms produce using two inputs one variable, viht, and one fixed, kiht whose endowment follows

an AR(1) process. Firms differ in the quantity of the fixed input at their disposal and in their produc-

tivity ωiht, which is also AR(1). Given the fixed input and the productivity, firms choose the variable

input to minimize costs. Firms combine these inputs using a translog production function:

yiht = ωiht + γαviht + γ(1− α)kiht + γ
α(1− α)

2

ϕ− 1

ϕ

(
v2iht + k2iht − 2kihtviht

)
. (11)

The translog production function is a second-order approximation of any production function.

Function (11) approximates a CES production function with elasticity of substitution ϕ, degree of

homogeneity γ, and variable input weight α. It nests the analytical framework’s production function

if α = ϕ = 1 and γ ∈ (0, 1).

The economy is subject to two aggregate shocks: aggregate demand Dt, which scales up demand

at given prices, and factor price Wt, which affects demand for the variable inputs. Both are exoge-

nous AR(1) processes. Finally, the econometrician observes output ỹiht, which is the sum of yiht and

measurement error ηiht.

Market share, markups, quantity, and input usage are endogenous and determined in equilib-

rium. We provide detailed derivations of the production function, the demand system, and equi-

librium factor demand in Appendix B, which also details how parameters are chosen based on data

from Section 3.

We perform 200 Monte Carlo simulations. Each simulation has 1600 firms, the average firm count

in two-digit industries in EAP. We divide firms into 180 markets, the level at which firms compete, and

simulate the economy for 40 periods.

4.1 Estimation

Turning to the estimation procedure, we assume that researchers correctly estimate a translog pro-

duction function with an AR(1) process for productivity

yiht = βvviht + βkkiht + βvvv
2
iht + βkkk

2
iht + βvkkihtviht + ωiht,

where ωiht is productivity which follows ωiht = ρωiht−1 + ξiht, while βs and ρ are to be estimated.

We then use the viht, to estimate markups along equation 1. The output elasticity of viht is ∂yiht
∂viht

=

βv+2βvvviht+βvkkiht, which varies across firms. The estimated production function is consistent with

the model’s true one (equation 11). The βs satisfy the following relations with the true production

parameters: βv = γα, βk = γ(1 − α), βvv = γ α(1−α)
2

ϕ−1
ϕ , βkk = βvv, βvk = −2βvv. Importantly, we do

not impose these theoretical relations in the estimation.
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We estimate the production function and compare resultant markups across four specifications.

The baseline specification uses observed output ỹiht in two stages. First, ỹiht is purged of measure-

ment error by regressing it on a third-order polynomial of inputs viht and kiht, time-fixed effects,

price, and market share. As explained in Section 2.3, the residual from this regression consistently

captures measurement error. Purged output is then the dependent variable in an IV-GMM estima-

tion using past inputs as instruments. Appendix C elaborates.

The second specification uses revenue instead of quantity. We run the first stage without price

and market share, as researchers with only revenue data would be unable to control for prices. Ad-

ditionally, this first stage matches the one frequently used in prior work, following Ackerberg et al.

(2015) (ACF below).

In the third and fourth specifications, we estimate the production function without a first-stage

regression. The third specification uses quantity and follows Blundell and Bond (2000), which is an

application of Arellano and Bond (1991) and Blundell and Bond (1998). Essentially, this specification

uses lagged first-differences as instruments for equations in levels, in addition to the usual lagged

levels as instruments for equations in first-differences. This is the specification recommended by

Doraszelski and Jaumandreu (2019, 2021). In the fourth specification, we run the same estimation

using revenue as the dependent variable.

4.2 Results

We assess the quality of quantity- and revenue-based markup estimates in two steps. Section 4.2.1

provides a detailed assessment of the production function and markup estimates for a preferred cal-

ibration based on the micro data. Section 4.2.2 shows that the assessment is robust to significant

parameter changes.

4.2.1 Main Calibration

In the main calibration we quantify the model using parameter values that are either standard in

the literature or that directly come from the French data described in Section 3. Full details on the

calibration are provided in Appendix B.1.

Production function estimates. We first estimate the production function using both the two-stage

baseline specification with quantity data, and the two-stage “ACF” specification with revenue data.

Table 1 presents the estimated production function, showing averages across the 200 Monte Carlo

simulations. The baseline specification identifies the production function with precision, with all

coefficients equal to or within a standard deviation of their true value. Estimates are also consistent

across simulations, as indicated by low standard deviations. The average elasticity of output to the

variable input, which determines the average estimate of the markup, equals 0.294, and is close to

the true average of 0.295.
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Table 1: Estimated Production Function Parameters
βv = αγ βk = (1− α)γ βvv=γ

α(1−α)
2

ϕ−1
ϕ

βkk = βvv βvk = −2βvv

True value 0.32 0.48 0.009 0.009 -0.017

Quantity 0.32 0.48 0.009 0.009 -0.018
(Baseline) (0.002) (0.001) (.0004) (.0005) (0.001)

Revenue 0.29 0.31 0.005 -0.001 -0.016
(ACF) (0.002) (0.003) (.0022) (.0037) (0.005)

NOTE: “True value” coefficients are directly calculated from the calibrated parameters (α, γ, ϕ). “Baseline”: A two-stage IV-GMM on
observed quantity. “ACF”: A two-stage IV-GMM on revenue. Production function coefficients are averaged across 200 Monte Carlo
simulations. Standard deviations across the Monte Carlo simulations are given in parentheses.

The “ACF” specification does not identify the production function coefficients, as expected when

using revenue instead of quantity data. The average estimate for βv of 0.29 is slightly lower than the

true value of 0.32. The other coefficients affecting the elasticity of output to the variable input, βvv

and βvk, are both closer to zero than their true value, although the higher standard errors show that

these coefficients are estimated with considerable variability. More strikingly, the coefficient for the

fixed input, βk, falls from 0.48 to 0.31, and the one for the fixed input squared, βkk, flips sign. The

latter are not used to compute the output elasticity of v, so they do not affect the average estimate of

the markup. The average estimated output elasticity of v is 0.296, close to the true value of 0.295.

These estimates are consistent with our analytical results. Section 2.2.2 showed that revenue-

based estimates of the production function can be biased upwards, or downwards, or be unaffected,

depending on the correlation between prices and inputs. Section 2.2.3 showed that downward-

sloping demand curves cause a downward bias on the estimated elasticity in the absence of demand

shocks. Our simulated firms are subject to aggregate demand shocks, which create a positive corre-

lation between input usage and prices under diminishing returns to scale, limiting the impact of the

bias coming from downward-sloping demand.

Markup estimates. We next use these coefficients to estimate markups. The results are summarized

in Table 2. We calculate the correlations with true (log) markups for each simulation and present the

average, with standard deviations in parentheses. The baseline estimates are close to true markups.

The correlation is close to one, and the mean, standard deviation, median and interquartile range are

estimated to within a tenth of a decimal point. The slight deviations between true markups and esti-

mated markups are in line with the modest differences between the true and estimated coefficients

in Table 1, and may be caused, for example, by the fact that the first-stage regression approximates

the implicit relationship between productivity and inputs through a third-order polynomial.

The bottom panel of Table 2 describes the markup estimates based on revenue data. These are

highly informative of true markups, with a correlation of 0.94 between the true markup and the

revenue-based “ACF” markups. These results again show that the revenue-based estimates of the
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Table 2: Overview - Markup Estimates
Correlation Log Markup Moments

with true markups Mean St. Dev. Median IQR

True markups 1.00 0.23 0.07 0.21 0.09

Quantity 1.00 0.22 0.07 0.21 0.09
(baseline) (0.01) (.016) (.001) (.016) (.002)

Revenue 0.94 0.23 0.07 0.21 0.08
(ACF) (0.06) (.020) (.011) (.022) (.015)

NOTE: The first column presents estimates’ correlations with true markups. Subsequent columns show moments of the estimated (log)
markup distribution. Standard deviations across 200 Monte Carlo simulations are in parentheses. “Baseline”: A two-stage IV-GMM on
observed quantity. “ACF”: A two-stage IV-GMM on revenue.

production function elasticities are not the revenue elasticities of an input. If they had been, log

markups should equal 0 and be uninformative of true markups (Section 2.2.1 ). Rather, the revenue-

based elasticities are biased estimates of output elasticities of the inputs.

From Section 2.2.4, it follows that a high correlation between true markups and revenue-based

estimates requires that prices have low correlations with the production function instruments. Ap-

pendix Table 6 confirms that correlations are low in the simulations, and that the low correlations are

consistent with the data.

Figure 1 provides a graphical illustration of the high correlation between revenue-based markup

estimates and true markups. It presents a binned scatter plot between the baseline and “ACF” esti-

mates in log-levels (left-hand panel) and in log first-differences (right-hand panel). The plots confirm

that quantity-based and revenue-based markups are tightly linked over the entire distribution, espe-

cially in first-differences. The regression coefficients are 0.85 and 0.99, respectively, and the linear fit

in first-differences resembles a perfect 45-degree line.

Markup correlations. We next examine how markup estimates correlate with variables from seminal

regressions such as markups on the profits rate (operating profit over sales), the material share (ra-

tio of variable-input spending over sales) and market share. For both revenue and quantity-based

estimates, we run

xit = χ(ln µ̂it) + φi + ψt + ϵit, (12)

where φi and ψt denote firm- and time effects. We divide markup estimates by their standard

deviations to ease comparison of rows. The idea is to check whether these regressions are similar for

markups based on revenue and quantity data. If so, this supports prior work using revenue markups

in such regressions.

Table 3 presents the results, confirming that revenue-based markup estimates do well at retriev-
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Figure 1: Binned Scatter Plot for Simulated Quantity and Revenue Markups
Log-Markups Log-Differenced Markups
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NOTE: The figures plot the relationship between quantity-based markups (“baseline”) and revenue-based markups (“ACF”) in simulated
data. Log-markups are used in panel (a), log-differenced markups in panel (b). Linear regression coefficients are 0.85 and 0.99,
respectively. The scatters are averages across Monte Carlo simulation.

ing the OLS coefficient χ for true markups. Table 3 shows that if researchers are unaware of bi-

ases from the use of revenue data, relationships between markups and other variables remain well-

estimated. Market share’s R2 is particularly high, as expected in an Atkeson and Burstein (2008)

model.

As we note in Section 2.2.5, there is an alternative approach to avoid biases in regressions such

as these. As the output elasticity of vit is pinned down by the interaction of sector-fixed effects and

input usage, one could add these as controls to the regression, as long as they are not the object of

interest. The remaining markup variation then comes from vit’s revenue share. That is the approach

advocated by Bond et al. (2021) and De Loecker and Warzynski (2012).

Measurement error. Thus far we have purged output from measurement error through a first-stage

Table 3: Simulated Relation between Markup Estimates and Other Variables
Profit Rate Material Share Market Share

True Markups 0.0192*** -0.0192*** 0.0683***
(0.0001) (0.0001) (0.0001)

R-Squared 0.901 0.901 0.996

Quantity (Baseline) 0.0197*** -0.0197*** 0.0700***
(0.0001) (0.0001) (0.0001)

R-Squared 0.899 0.899 0.995

Revenue (ACF) 0.0216*** -0.0216*** 0.0758***
(0.0001) (0.0001) (0.0001)

R-Squared 0.903 0.903 0.966

NOTE: OLS coefficients. Explanatory variables are in the column headers. “Baseline”: IV-GMM on quantity. “ACF”: IV-GMM on revenue.
Details in Section 4.1. Markups are normalized to have unit standard deviations. Firm-clustered standard errors in parentheses. ***
denotes 1% level significance. All specifications include time- and firm-fixed effects. OLS coefficients, standard errors and R2s are
averages across the Monte Carlo simulations.
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Figure 2: Effect of First-Stage Purging Regression on Markup Estimates
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NOTE: Figures plot the average correlation between true markups and quantity (blue-solid) or revenue (red-dashed) based markup esti-
mates by standard deviation of measurement error (normalized to 1 for the main calibration). Confidence intervals are the interquantile
range. The left-hand panel uses the single-stage Blundell and Bond (2000) estimator; the right-hand panel uses the two-stage baseline
and ACF estimator.

regression. There are settings where purging is not feasible, however, for example when the variables

that determine firms’ variable input demand are unknown or unobserved (Doraszelski and Jauman-

dreu 2019, 2021), or when there are quality differences between products (see Section 2.4.2). As ex-

plained in Section 2.3, the Blundell and Bond (2000) estimator consistently estimates the production

function without purging, at the expense of greater asymptotic variance. We can use the simulations

to assess the impact of this higher variance on the markup estimates at various levels of measure-

ment error. In our calibration, 9.5% of the variation in quantity comes from measurement error,

consistent with the French data (see Appendix B.1). Below we estimate markups using the Blundell

and Bond estimator with the baseline measurement error, and also subsequently when the error’s

standard deviation is 2, 4, 8 or 16 times larger.

Figure 2 presents the results. At the baseline measurement error, Blundell and Bond (2000)’s es-

timator in the left-hand panel performs very well. The average correlation of markup estimates is

close to one, regardless of whether quantity (blue-solid) or revenue (red-dashed) data is used. For

higher levels of measurement error, the two-stage procedures in the right-hand panel perform bet-

ter. Even when the error’s standard deviation is 16 times the baseline level, the quantity estimates

have a correlation with true markups of 0.88, and the “ACF” revenue estimates have a correlation

with true markups of 0.82. Not purging for the error lowers those correlations to 0.47 and 0.28, re-

spectively. It is thus advisable to use a two-stage procedure in settings with significant measurement

error. The Blundell and Bond alternative performs well in settings with low measurement error.
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Figure 3: Revenue and Quantity Markups for Alternative Parameters
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NOTE: Figures plot quantity-based (Baseline; blue-solid) and revenue-based (ACF; red-dashed) markup estimates. Vertical lines give

baseline values for each column’s parameter. Upper figures: correlation between estimates and true markups, interquantile range in

shaded areas. Bottom figures: average deviation of estimated markups’ mean from true mean; shaded areas give standard deviations of

that deviation across Monte Carlo simulations.

4.2.2 Robustness

Results for the main calibration are robust to substantial changes in the parameters. We perturb all

the production function parameters (α, γ, ϕ), and the elasticity of substitution across markets (σ).

We vary the variable input’s share in production (α) from 0.4 to 0.9. We raise this parameter because

in the baseline (α of 0.4) the average output elasticity is 0.3, on the low end of the sector averages of

0.3 to 0.8 that we find in Section 5 below. We vary returns to scale (γ) from 0.6 to 1.0, symmetrically

around the baseline calibration of 0.8. Elasticity of substitution ϕ is 1.10 in the baseline, and we vary

this parameter from 0.95 to 1.2.25 Finally, σ > 1 governs the dispersion of markups. We raise it from

the standard value in the literature of 1.1 to 3.1, which reduces true markup dispersion by 78%.

Figure 3 presents the results. The top plots show that the correlation between markups and

quantity-based estimates is close to 1 across estimations, while the revenue-based estimates have

a correlation with true markups of at least 0.88. This shows that results in Section 4.2.1 are robust to

alternative parametrizations.

25Oberfield and Raval (2021) find a 0.8 elasticity of substitution. We use a higher lower bound, because for low values the
Atkeson and Burstein (2008) model becomes hard to solve, as marginal costs are highly non-linear in productivity. There
is no degradation in the estimators’ performance.
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5 Empirics

We now turn to markup estimation in the EAP-FARE data. True markups are unknown, but we can

still assess whether markup estimates based on revenue data are similar to estimates based on quan-

tity data. There are a series of challenges. First, quantities are approximated by the ratio of revenue

over relative prices, as explained in Section 3. Second, firms are unlikely to have identical production

functions and, more generally, the translog production function and the AR(1) productivity process

may not accurately reflect true production processes. The errors that this causes are specific to each

estimation and may differ for quantity and revenue. Despite these complications, we show below

that revenue- and quantity-based markups are highly correlated within industries, especially in first-

differences, and have reasonably similar variances. We also show that revenue and quantity-based

markups have similar relationships with key variables such as the profit rate, labor, materials, and

the market share.

5.1 Production Function Estimation

In contrast to the single sector in the simulations and the analytical framework, the empirical analysis

has 18 two-digit manufacturing industries, summarized in Table 13. We assume that firms only share

parameters of the production function and productivity process within industries, and thus perform

a separate estimation by industry. Specifically, we assume that log output yit is a translog function of

the log of materials mit, the wage bill lit, capital kit and service inputs oit:

yit = ωit + βImmit + βIl lit + βIkkit + βIooit +
∑∑

{h,j}∈{m,l,k,o}

βIhjhitjit, ∀i ∈ I (13)

where productivity ωit follows AR(1) process ωit = ρIωit−1+ ξit for two-digit sector I. We assume that

materials, mit, correspond to variable input vit in Section 2. To estimate markups, we are therefore

interested in output elasticity αm
it :

αm
it ≡ ∂yit/∂mit = βIm + 2βmmmit + βImooit + βImllit + βImkkit.

Note that firms within an industry do not have the same output elasticities, αm
it , as the elasticity

depends on the level of each input that the firm uses.

5.2 Results

As in the simulations, we estimate production functions using a two-stage procedure with either

quantity (baseline) or revenue (ACF) as the dependent variable.26 Estimated output elasticities av-
26The appendix also provides results for the single-stage Blundell and Bond (2000) estimator.
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erage 0.54 across all sectors in the baseline estimation, with a standard deviation of 0.29. Table 10

lists separate averages by two-digit industry. The average output elasticity of materials is 0.40 us-

ing revenue, with a standard deviation of 0.14. Average quantity-based elasticities are higher than

revenue-based elasticities in 16 of 18 industries. On average, quantity elasticities exceed revenue-

based elasticities by 38%.

Markup Estimates. We next use these estimated firm-level elasticities to compute markups along

equation (1). In the remaining analysis we focus on the log of markups. To treat for outliers, we

trim the bottom and top of the distribution at the 1.5% level for each specification, and perform

the analysis on firms for which all estimates fall within the non-trimmed sample, leaving 147,403

observations.27

To make the empirical results comparable to the simulations and the analytical framework, we

compare revenue- and quantity-based markups within industries. Table 4 presents the estimates’

moments. Each moment is calculated at the sector level and subsequently averaged across indus-

tries. The table presents unweighted averages, but results are similar when sectors are weighted by

size.

We find an average log markup of 0.37 using quantity data and 0.13 for revenue data. That gap

wedge is consistent with the lower estimated output elasticities from revenue data. In contrast to

the simulation, we also find a gap between the standard deviation of revenue-based markups and

quantity-based markups. On average, quantity-based markups have a standard deviation of 0.23,

while revenue-based markups have a standard deviation of 0.16. The medians and percentiles show

that the lower dispersion of revenue-based markups is not driven by the tails. In the analytical frame-

work the standard deviations would be equal, because the production function is Cobb-Douglas. In

Table 2’s simulation, however, revenue markups had similar standard deviations for sizeable devia-

tions from Cobb-Douglas. It is possible that various empirical complications explain the wedge: the

production function and productivity process are unlikely to be exactly equal across firms within an

industry, and may also not be exactly equal to equation (13). Below, we show that despite these limi-

tations, overall correlations between revenue and quantity-based markups are high.

Markup Correlations Table 5 presents the correlation between revenue- and quantity-based markup

estimates in the data. The main panel summarizes sector-level correlations, which are directly com-

parable to the simulations in Table 2. The average simple correlation for log markups is 0.61, while

the Spearman rank correlation is 0.62. The high within-sector correlations are visible in the majority

of sectors: median correlations exceed average correlations, and consistently exceed 0.65 for levels

27The sample reduction is largely because of high variance of the Blundell and Bond (2000) elasticities. These are nega-
tive for a non-negligible fraction of firms, for whom log markups are not defined.
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Table 4: Summary Statistics - Within-Sector Moments of the Log Markup Estimates
Mean St. Dev. Median* 25th Pct.* 75th Pct.*

Quantity (baseline) 0.366 0.232 -0.011 -0.149 0.137
(0.003) (0.003) (0.004) (0.004) (0.004)

Revenue (ACF) 0.128 0.163 -0.015 -0.113 0.099
(0.002) (0.002) (0.003) (0.003) (0.004)

NOTE: Moments are calculated at the sector level and then averaged across the sectors in the data. Parentheses present bootstrapped

standard errors of the moment. “Baseline”: two-stage IV-GMM on quantity. “ACF”: two-stage IV-GMM on revenue. 147,704 obs. *:

Medians and percentiles are expressed in deviation of sector averages.

and 0.84 for first-differenced markups.28 Turning to first-differences, the correlations increase to 0.80

for the simple correlation and 0.83 for the rank correlation. This is close to the 0.94 correlation in the

simulations, despite the complications of estimating production functions in the data.

The final column of Table 5 also present correlations when all firms are pooled. As expected,

combining heterogeneous sectors lowers the correlations: the Pearson correlation is 0.34 while the

rank correlation is 0.43. Yet the correlation of growth in markups remains high: 0.80 for the Pearson

correlation and 0.84 for rank correlations. Growth in revenue markups thus seems a good predictor

of growth in quantity-based markups, even when comparing firms across sectors.

To provide an alternative illustration of the extent to which revenue-based markups successfully

predict in quantity-based markups, we next assess whether the linear regression of quantity-based

markups on revenue-based markups has a coefficient close to 1. If so, µ̂Rit will on average equal

quantity-based markup estimates up to a sector effect. We plot results in binned scatter plots in

Figure 4, both in levels (left) and first-differences (right). The linear regression coefficients equal 0.89

and 0.92, respectively. Both show an excellent fit between the estimates across values of the revenue-

based markups, with the linear fit nearing a 45° line for first-differences. This is quantitatively similar

to the corresponding simulation plots (Figure 1), where regression coefficients were 0.85 and 0.99.

Finally, we assess whether relationships between markups and key variables depend on the markup

Table 5: Correlation between Quantity- and Revenue-Based Log Markup Estimates
Summary of Within-Sector Correlations Pooled

Average St. Dev. Median 25th Pct. 75th Pct. Overall
Pearson Correlation 0.61 (0.23) 0.65 0.41 0.78 0.34
Pearson Corr. First Diff. 0.80 (0.16) 0.84 0.70 0.94 0.79

Rank Correlation 0.62 (0.23) 0.68 0.39 0.79 0.43
Rank Corr. First Diff. 0.83 (0.12) 0.84 0.71 0.95 0.84

NOTE: The table presents correlations between revenue- and quantity-based markup estimates. Correlations are calculated at the two-
digit sector in the left-hand panel, and for all observations pooled in the right-hand panel. The summary statistics are averages of the
correlations across sectors. 147,704 observations.

28Specifications based on the Blundell and Bond (2000) estimator in Appendix E are qualitatively similar with, in gen-
eral, lower positive correlations. This might be due to the fact that prices, and thus quantities, may be subject to consider-
able error in our data. As we show in Section 4.2, two-stage estimators are more robust in such settings.
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Figure 4: Binned Scatter Plot: Quantity- versus Revenue-Based Markups
Log-Markups Log-Differenced Markups
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Notes: The figures plot the binned scatter plot between quantity-based markups (baseline) and revenue-based markups (ACF).
Regression coefficients for the linear fit are 0.89 and 0.91, respectively.

specification, as we did for the simulations in Table 3. We regress revenue- or quantity-based markups

on either the profit rate (the ratio of operating profits over sales), labor share (the ratio of its wage bill

over sales), material cost share (the ratio of materials purchased over sales), and market share.

Results are presented in Table 6. Rows present regression coefficients for a markup estimate,

columns contain the regressor. We pool all observations and normalize the markups to have unit

standard deviations. All relationships run in the expected direction: high markup firms are more

profitable, have lower labor shares, lower material shares, and greater market shares, irrespective of

whether revenue or quantity markups are used. Moreover, the relationships are all significant at the

1% level. Overall, Table 6 suggests that estimates of relationships between markups and key variables

are qualitatively robust to the use of revenue-based markup estimates. This lends credibility to prior

work using revenue-based markups in regressions and further supports our conclusion that these

estimates contain useful information about firms’ true markups.

Table 6: Simulated Relation between Markup Estimates and Other Variables
Profit Rate Labor Share Material Share Market Share

Quantity (baseline) 0.150*** -0.050*** -0.096*** 0.070***
(0.002) (0.001) (0.001) (0.006)

R-Squared 0.357 0.098 0.312 0.005

Revenue (ACF) 0.111*** -0.027*** -0.077*** 0.031***
(0.001) (0.001) (0.001) (0.004)

R-Squared 0.502 0.075 0.501 0.005

NOTE: Each entry provides the OLS estimate using the variable in the column header as the dependent variable and the markup series in
the row as the regressor. Firm-clustered standard errors in parentheses. *** denotes significance at 1% level, respectively. All regressions
include time- & firm-fixed effects. Observations: 147,704.
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Figure 5: Trend in Aggregate Markups in France (index = 1 in 2010)
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NOTE: Solid-blue lines plot aggregate (harmonic revenue-weighted) markups based on quantity. Green dashed lines, from left to right,
plot: aggregate markups based on revenue; aggregate markups based on quantity that are simple rather than harmonic weighted; ag-
gregate markups based on quantity with COGS as the variable input; aggregate markups based on quantity data for publicly listed firms.
Blue-dash-dotted lines in the second plot: aggregate markups based on quantity that are cost weighted. Markup levels are not shown;
all are indexed to 1.0.

6 Aggregate Markups

Finally, we discuss the robustness of trends in aggregate markups. De Loecker et al. (2020) show a

significant rise in average firm-level markups since the 1980s for U.S. Compustat firms. This influ-

ential result has raised several concerns, mostly about the use of Compustat: (i) revenue is used to

proxy for quantity, our main subject of analysis; (ii) they measure trends in simple revenue-weighted

averages rather than harmonic or cost-weighted averages, which may not be welfare-relevant aggre-

gate markups; (iii) they assume Cost of Goods Sold (COGS) is the variable input, which may be too

broad (Basu 2019); and (iv) Compustat covers public firms, which are unrepresentative of the entire

economy.

These choices are defensible with the data limitations faced by De Loecker et al. (2020), but we

are able to analyse the quantitative importance of these critiques for aggregate markup trends in

France. For the baseline, we define the aggregate markup as the sales-weighted harmonic average of

our main quantity-based markup estimates,
(∑

i∈Itsitµ
−1
it

)−1
, where It is the set of sampled firms at

time t, while sit denotes firm i’s share in aggregate sales. This measure is the welfare-relevant mea-

sure of the aggregate markups in a broad set of models (see, e.g., Edmond et al. 2023; Grassi 2017). We

then deviate from this baseline in four ways: (i) using the revenue-based markups of the "ACF" spec-

ification, (ii) using a simple or cost-weighted average rather than a harmonic sales-weighted aver-

age, (iii) using the sum of materials and labor expenditure, a proxy for COGS, to estimate production

functions and markups, and (iv) computing the aggregate markup using our baseline quantity-based

markups only for firms that were publicly listed in 2007 – which is the final year for which we observe

listed status.
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Figure 5 shows the resulting time series for aggregate markups, where we investigate trends by

normalizing each series to one in 2010. The first panel shows that quantity-based and revenue-based

aggregate markups follow similar dynamics: they exhibit a decline around the Eurocrisis in 2011 and

2012, followed by an upward trend. Their average level is different, the aggregate revenue-based

markups averaging 1.08, while aggregate quantity markups average 1.45. The second panel shows

similar movements for the cost-weighted average, the simple sales-weighted average, and our base-

line aggregate markup. The third panel shows that when COGS is used as the variable input, markups

increase around 3%-points more over the sample. The average of the COGS aggregate markup is

lower than the baseline, at 1.30. The fourth panel shows that the aggregate quantity-based markup

for public firms jumps by around 20 points in the later part of the sample. Note, however, that our

sample contains an average of only 38 public firms per year, whose aggregate markup averages 1.81.

We conclude that trends in markups of French firms between 2010 and 2019 are robust to the use

of revenue and the type of aggregation, while both of these changes strongly affect the level of the

aggregate markup.

7 Conclusion

This paper assesses the feasibility of estimating markups from widely used data in the macroeco-

nomics and international trade literature. Practically, we conclude that it depends on the research

design whether an analysis can proceed with revenue data. If feasible, production functions for

markups should be estimated with quantity data. Given the paucity of such data, we show that rev-

enue data can suffice for researchers interested in dispersion of markups across firms. Revenue data

may also be used to estimate trends, if one is willing to assume a constant production function over

time. Conversely, in applications that focus on the average level of the markup, revenue data is not

appropriate.

There are a number of caveats. Our markup estimates are contingent upon correct specification

of the production function. While both our simulation and empirical analysis rely on the translog

function, which is a second-order approximation of any production function, approximation er-

ror will affect markup estimates. Our approach to measure markups will also capture other input

wedges, such as markdowns due to monopsony power, if the variable input is subject to them. A

quantification of markups’ contribution to overall input wedges, for example with external markup

estimates, is an exciting avenue for future research.
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“The Hitchhiker’s Guide to Markup Estimation”
Appendix - For Online Publication Only

A Theory Appendix

In this appendix, we first outline how the output elasticity of Vit is estimated. We start from the

ideal case in which a researcher observes prices, such that output can be measured by quantity (A.1).

The main text discusses the case where price is not observed. We then discussed the small sample

properties of the estimator (A.2) and the case of measurement errors (A.3). We also show that the

main results extend to more general frameworks (A.4) with a translog production function (A.4.1),

several inputs (A.4.2), with persistent productivity (A.4.3), and with all of this together (A.4.4). We

generalize our results on markup estimation when revenue is used in place of quantity for translog

production functions (A.5).

A.1 Identification with Price and Quantity Data

We here cover the estimation of α if revenue, prices, and quantities are observable. Our estimator for

α builds on the two-stage GMM estimator of Ackerberg et al. (2015) to accommodate imperfect com-

petition. The first stage purges the quantity of equation (3) of the measurement error and unobserved

productivity shocks ηit. The second stage estimates the output elasticity α using an instrumental-

variable generalized method of moments (IV-GMM). We focus in this section on the second stage –

as it performs the actual production function identification. We introduce measurement errors and

a first stage in Section A.3.

Absent measurement error, the production function is yit = αvit + ωit. Least-square regressions

of vit on output yit will be biased, as unobserved productivity ωit (the residual in the regression)

affects firms’ choice of vit. Following the literature, we can construct an estimator to identify α by

instrumenting vit by vit−1:

Definition 2 The instrumental var. GMM (IV-GMM) estimator α̂ ∈ R is such that the momentE [ω̂itvit−1]

is equal to 0 where ω̂it = yit − α̂vit = (α− α̂)vit + ωit.

It is straightforward to solve for α̂ in closed form by substituting ω̂it into the moment condition:29

(α − α̂)E [vitvit−1] = 0, which uses the fact that that productivity ωit is orthogonal to vit−1, such that

E [ωitvit−1] = 0. It follows that as long as vit−1 is a relevant instrument for vit (that is, E [vitvit−1] differs

from zero), the only solution is that α̂ = α. Our estimator α̂ thus converges to the true elasticity α.

29In the above definition, the expectation operator E denotes the limit of the empirical average across observations.
We therefore study the asymptotic properties of the GMM estimator, which allows us to keep the argument as tractable as
possible.
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What ensures that the lagged variable input is a relevant instrument? As we have assumed – for

now – that productivity is not persistent, autocorrelation in vit comes from other sources.30 The

cost-minimizing firm’s first-order condition for vit summarizes the candidate drivers: vit = (1 −
α)−1 (ωit +mcit − wt) .

It follows that persistence in vit has to either come from persistence in the input price wt or from

log marginal costs mcit. Marginal costs equal Pit/µit, both of which are determined in equilibrium

by the demand system and the strategic interactions among firms. Hence, any persistence in out-

put price or markups will contribute to persistence in the variable input and thus to identification of

the production function. Persistence in input prices wt is a source of persistence in variable inputs

regardless of the mode of competition, providing a further source of identification ofα (a point previ-

ously made by, e.g., Gandhi et al. 2020). We conclude that the parameters of the production function

in our simple framework are identified under imperfect competition as long as there is persistent

variation in markups, output prices or input prices.31

A.2 Finite Sample Estimator and its Asymptotic Variance

In this section we derive the estimator for a finite sample. We also use this derivation to compute the

asymptotic variance of the GMM estimator.

DEFINITION: The GMM estimator is α̂ such that
∑

i,t ω̂itvit−1 = 0 with ω̂it = yit−α̂vit = (α−α̂)vit+
ωit.

To solve for the estimator, we need to find the value of α̂ such that
∑

i,t ω̂itvit−1 = (α−α̂)
∑

i,t vitvit−1+∑
i,t ωitvit−1 = 0. As long as

∑
i,t vitvit−1 ̸= 0, the unique α̂ that solves this equation is α̂ = α +∑

i,t ωitvit−1∑
i,t vitvit−1

, whose limit is α when the sample size increases, given that E[ωitvit−1] = 0.

Finally, let us derive the asymptotic variance of the GMM estimator. Using the (finite sample) ex-

pression of the estimator, we have
√
n(α̂− α) =

√
n 1

n

∑
i,t ωitvit−1

1
n

∑
i,t vitvit−1

. By the (weak) law of large numbers,

1
n

∑
i,t vitvit−1

p−→ E[vitvit−1], and, by the central limit theorem,
√
n 1
n

∑
i,t ωitvit−1

d−→ N
(
0,E

[
ω2
itv

2
it−1

])
.

The Slutsky theorem implies
√
n(α̂− α)

d−→ N
(
0,

E[ω2
itv

2
it−1]

E[vitvit−1]2

)
; that is, Var [α̂] ∼ E[ω2

it]E[v2it−1]√
nE[vitvit−1]2

.

A.3 Adding Measurement Errors

As in the baseline framework, assume that firms produce yit using the single variable input vit while

being subject to idiosyncratic productivity shocks ωit. Furthermore, assume that the firms’ output is

observed subject to measurement error, or equivalently, that unexpected productivity shocks occur

30When we generalize our setup in Appendix A.4.3 (where productivity is persistent, e.g. a linear AR(1) process with
coeff. ρ), we show that the necessary condition for identification is to have autocorrelation in ṽit = vit−ρvit−1. Persistence
in productivity itself therefore does not aid identification.

31Note that this means that it is more straightforward to estimate the production function under imperfect competition
than under perfect competition. Under perfect competition (where marginal costs equal prices), persistence in the vari-
able input cannot come from the markup. If output prices are (e.g.) i.i.d., this means that the only source of persistence is
the input price (Gandhi et al. 2020).
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after input vit is set. The measurement error is log-additive and denoted by ηit. All firms produce

along ỹit = αvit + ωit + ηit, where ỹit denotes observed output. We assume that measurement er-

rors at time t are independent of the past value of the variable input; that is, E [ηitvit−1] = 0. If the

econometrician ignores the presence of these measurement errors, the IV-GMM estimator is defined

as follows:

Definition 3 The IV-GMM estimator is α̂ ∈ R so that moment E
[
( ̂ωit + ηit)vit−1

]
is equal to zero, where

̂ωit + ηit = ỹit − α̂vit = (α− α̂)vit + ωit + ηit.

The GMM estimator is characterized by: E
[
( ̂ωit + ηit)vit−1

]
= (α − α̂)E[vitvit−1] = 0, where we use

the fact that E [ω̂itvit−1] = 0. The GMM estimator α̂ of the variable input’s output elasticity is equal

to α as long as E[vitvit−1] ̸= 0. The estimator is still consistent and measurement error only increases

the variance of the composite error term ωit + ηit in the production function. This point is known

and has been discussed, for example, in Blundell and Bond (2000).

There are three advantages to purging the observed quantity from measurement errors. The

first is that the increase in the variance of the composite error term ωit + ηit in the production

function raises the standard errors of the production function estimation. Indeed, a similar deriva-

tion to the one in Appendix A.2 yields that the asymptotic variance of the estimator is Var [α̂] ∼
E[v2it−1]

nE[vitvit−1]2

(
E
[
ω2
it

]
+ E

[
η2it
])
, which increases in measurement error variance.

The second advantage is that purging allows the econometrician to identify true productivity ωit,

which is relevant in many applications.

Third, measurement error can also impede the consistency of the IV-GMM estimator if ωit is per-

sistent with non-linear autoregressive terms (Bond et al. 2021). With persistent productivity, the

moment conditions of the IV-GMM estimator have to be slightly altered to consistently estimate α

(see Appendix A.4.3). For a linear AR(1) process of ωit, the moment conditions are that lagged in-

puts vit−1 and estimated productivity ω̂it are orthogonal to the innovation of the AR(1) process. For

non-linear processes (e.g. quadratic, cubic), in the absence of measurement error, the additional

moment conditions are that the higher-degree terms (e.g. ω̂2
it, ω̂

3
it) are orthogonal to the AR(1) in-

novation. Measurement error, however, contaminates the productivity estimates ω̂it. This means

that moment conditions with, e.g., ω̂2
it, ω̂

3
it contain higher-order moments of the measurement er-

ror. This prevents the moment conditions from holding at the true value of the output elasticity. For

example, a common empirical assumption is that the productivity process is well-approximated by

ωit = ρ1ωit−1 + ρ2ω
2
it−1 + ξit, where ξit are white-noise productivity shocks. In the presence of mea-

surement error, the moment conditions E[vit−1ξ̂it] = 0,E[ω̂it−1ξ̂it] = 0, and E[ω̂2
it−1ξ̂it] = 0, where

ω̂it is defined as before while ξ̂it ≡ ω̂it − ρ̂1ω̂it−1 − ρ̂2ω̂
2
it−1, will not suffice. The problem is the non-

linear moment condition E[ω̂2
it−1ξ̂it] = 0. To see this, consider the value of the moment at α̂ = α:

E[ω̂2ξ̂it] = E[(ωit + ηit + (α− α̂)vit)
2ξ̂it] = E[η2itξ̂it] ̸= 0. It follows that the IV-GMM estimator does not

estimate the production function parameters unless productivity follows a linear (dynamic) process.
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A.4 Extensions

We now show that the identification results of our estimator are robust to several extensions that are

common in practical applications. We study the case of the translog production function, the case of

several inputs, the case of AR(1) productivity, and the case with all of these extensions together.

A.4.1 Translog Production Function

We first ease the assumption that output is log-linear by replacing the Cobb-Douglas production

function with a translog specification: yit = αvit + βv2it + ωit. The other assumptions are unchanged.

We assume that quantity is observed in this section. We leave the discussion of unobserved quantity

and its implications for markup estimation to the dedicated Appendix A.5. Our aim is to identify α

and β, in order to calculate size-dependent output elasticities of the variable input for the calcula-

tion of true markups µit = (α+2βvit)(PitYit)/(WtVit). The least-squares estimation of the production

function suffers from the same bias as before, which we address by instrumenting vit and v2it by their

respective lags. Econometrically, estimating the translog production involves estimating a multivari-

ate GMM regression with instrumental variables. Formally, we define the estimator as:

Definition 4 The GMM estimator is a pair (α̂, β̂) such that E [ω̂itvit−1] = 0 and E
[
ω̂itv

2
it−1

]
= 0 where

ω̂it = yit − α̂vit − β̂v2it = (α− α̂)vit + (β − β̂)v2it + ωit.

It remains simple to solve for the estimator (α̂, β̂) in our parsimonious setting. This involves solv-

ing the system of equations implied by the moment conditions:

E [ω̂itvit−1] = 0

E
[
ω̂itv

2
it−1

]
= 0

⇐⇒
(α− α̂)E[vitvit−1] + (β − β̂)E[v2itvit−1] = 0

(α− α̂)E[vitv2it−1] + (β − β̂)E[v2itv2it−1] = 0
.

This system can be rewritten in matrix form with V (B − B̂) = 0, where

B − B̂ =

 α− α̂

β − β̂

 and V =

 E[vitvit−1] E[v2itvit−1]

E[vitv2it−1] E[v2itv2it−1]

 .

If the determinant of V is not zero, the GMM estimator on translog is identified and consistent, i.e.

α̂ = α and β̂ = β.

A.4.2 Several Inputs

In this extension, we assume that firms produce with two inputs: a variable input vit and another in-

put kit. We assume that kit is, in the terminology of the production function literature, dynamic. This

means that firms face adjustment costs and other inter-temporal constraints when setting kit, which

leads firms to choose kit before observing current productivity, i.e. E [ωitkit] = 0. The production
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function in logs reads yit = αvit + βkit + ωit. We are interested in estimating (α,β). As kit is set before

productivity is observed, we only need to instrument the variable input with its lag. The estimation

is therefore a GMM regression with one endogenous and one exogenous variable. For quantity, the

estimator is

Definition 5 The GMM estimator is a pair (α̂, β̂) so that E [ω̂itvit−1] = 0 and E [ω̂itkit] = 0, where

ω̂it = yit − α̂vit − β̂kit = (α− α̂)vit + (β − β̂)kit + ωit.

Solving for the estimator (α̂, β̂) implies solving for the following system of equations, defined by

the moment conditions:

E [ω̂itvit−1] = 0

E [ω̂itkit] = 0
⇐⇒

(α− α̂)E[vitvit−1] + (β − β̂)E[kitvit−1] = 0

(α− α̂)E[vitkit−1] + (β − β̂)E[k2it] = 0
.

This system can be rewritten in matrix form, with V (B − B̂) = 0, where

B − B̂ =

 α− α̂

β − β̂

 and V =

 E[vitvit−1] E[kitvit−1]

E[vitkit−1] E[k2it]

 .

As long as the determinant of V is not zero, the GMM estimator is identified and asymptotically

consistent such that α̂ = α and β̂ = β.

Using Revenue Instead of Quantity. When revenue, denoted rit in log, is used as a proxy for quan-

tity, the estimator can be defined as follows:

Definition 6 The GMM estimator is a pair (α̂, β̂) so that E
[
t̂fpritvit−1

]
= 0 and E

[
t̂fpritkit

]
= 0, where

t̂fprit = rit − α̂vit − β̂kit = (α− α̂)vit + (β − β̂)kit + pit + ωit.

The estimator is the solution of the following system of equations:

(α− α̂)E[vitvit−1] + (β − β̂)E[kitvit−1] + E [pitvit−1] = 0

(α− α̂)E[vitkit−1] + (β − β̂)E[k2it] + E [pitkit] = 0,

which admits a unique solution if the determinant of V is not zero. If the latter is satisfied, this unique

solution estimator is B̂ = B+V −1P , where we denote the vectorP = (E [pitvit−1] ,E [pitkit])
′. As in the

simple framework, the bias comes from the correlation of price with the instruments. This estimator

will be asymptotically non-consistent if either E [pitvit−1] or E [pitkit] are different from zero.
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A.4.3 Persistent Productivity

In this extension, we assume that total factor productivity follows a first-order autoregressive (AR1)

process in logs. We assume that quantity is observed. We leave the discussion on the case when

revenue is used in place of quantity to the general proof in Appendix A.4.4. The production function

is still yit = αvit + ωit, while the productivity process is ωit = ρωit−1 + ξit. Below we define the GMM

estimator (α̂, ρ̂) using vit−1 and ω̂it−1 as an instrument for vit and ω̂it.

Definition 7 The GMM estimator is a pair (α̂, ρ̂) so that E
[
ξ̂itvit−1

]
= 0 and E

[
ξ̂itω̂it−1

]
= 0, where

ω̂it = yit − α̂vit = (α − α̂)vit + ωit and ξ̂it = ω̂it − ρ̂ω̂it−1 = ξit + (α − α̂)(vit − ρvit−1) + (ρ − ρ̂)ωit−1 +

(ρ− ρ̂)(α− α̂)vit−1.

The estimator, (α̂, ρ̂), is characterized by the following system of equations defined by the moment
conditions:

E
[
ξ̂itvit−1

]
= 0

E
[
ξ̂itω̂it−1

]
= 0

⇐⇒

(α− α̂)E [(vit − ρvit−1)vit−1] + (ρ− ρ̂)E [ωit−1vit−1] + (α− α̂)(ρ− ρ̂)E
[
v2it−1

]
= 0

(α− α̂)E [(vit − ρvit−1)ωit−1] + (ρ− ρ̂)E
[
ω2
it−1

]
+ (α− α̂)(ρ− ρ̂)E [vit−1ωit−1] = 0.

In general, the above system of equations admits two solutions. One is the true solution with α̂ = α

and ρ̂ = ρ, while the other solution converges to (α, ρ) as variation in the data increases. Below

we formally discussed this case, but first, to understand the essence of the argument, consider the

following proof sketch: when α̂ and ρ̂ are not too far from α and ρ, respectively, the terms of the form

(α̂−α)(ρ̂−ρ) are of second order. In this case, the system characterizing the estimator (α̂, ρ̂) reduced

locally to the matrix equation V (B − B̂) = 0, where

B − B̂ =

 α− α̂

ρ− ρ̂

 and V =

 E[(vit − ρvit−1)vit−1] E[ωit−1vit−1]

E[(vit − ρvit−1)ωit−1] E[ω2
it−1]

 .

As long as the determinant of V is not zero, the GMM estimator is locally identified and asymptoti-

cally consistent.

Below, we show that the GMM estimator is globally identified and asymptotically consistent as

long as there is enough variation in the data. The GMM estimator with AR(1) productivity (Def. 7) is

characterized by the system of equations

 E [ξitvit−1] + (α− α̂)E [(vit − ρvit−1)vit−1] + (ρ− ρ̂)E [ωit−1vit−1] + (α− α̂)(ρ− ρ̂)E
[
v2it−1

]
= 0

E [ξitωit−1] + (α− α̂)E [(vit − ρvit−1)ωit−1] + (ρ− ρ̂)E
[
ω2
it−1

]
+ (α− α̂)(ρ− ρ̂)E [vit−1ωit−1] = 0

⇐⇒
{

g + aX + bY + cXY = 0

h+ dX + eY + fXY = 0,

where X = α − α̂, Y = ρ − ρ̂, and, a = E [(vit − ρvit−1)vit−1], b = E [ωit−1vit−1], c = E
[
v2it−1

]
, d =
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E [(vit − ρvit−1)ωit−1], e = E
[
ω2
it−1

]
, f = E [vit−1ωit−1] = b, g = E [ξitvit−1], and h = E [ξitωit−1] . Let us

look at the asymptotic where g = 0 and h = 0. Assuming c ̸= 0, we get

{
aX + bY + cXY = 0

dX + eY + fXY = 0
⇐⇒

{
X = 0

Y = 0
or

{
X = − bd−ae

cd−af

Y = bd−ae
ce−bf

if cd− af ̸= 0 and ce− bf ̸= 0.

It follows that there are two global solutions for the GMM estimator with AR(1):


α̂ = α

ρ̂ = ρ

or


α̂ = α− bd−ae

cd−af
= α−

√
Var[ωit−1]

Var[vit−1]

Corr(ṽit,vit−1)−Corr(ṽit,ωit−1)Corr(ωit−1,vit−1)

Corr(ṽit,ωit−1)−Corr(ṽit,vit−1)Corr(ωit−1,vit−1)

ρ̂ = ρ+ bd−ae
ce−bf

= ρ+
√

Var[ṽit]
Var[vit−1]

Corr(ṽit,vit−1)−Corr(ṽit,ωit−1)Corr(ωit−1,vit−1)

1−Corr(ωit−1,vit−1)2
,

where ṽit ≡ vit − ρvit−1 =
1

1−α (ξit +mcit − ρmcit−1 + wt − ρwt−1).32

The GMM estimator admits (exactly) two possible solutions. One solution provides the true

value of the parameters, while the second solution is unrelated to the true parameters. However, if

Var[vit−1] is large compared to Var[ωit−1] and Var[ṽit] (that is, their ratio goes to infinity while keep-

ing fixed the correlation structure), then there is a unique solution for α̂ and ρ̂. To conclude, if there

is enough variation in the data, the GMM estimator is identified.

A.4.4 Full Proof

In this appendix, we study the production function estimator for an arbitrary number of inputs, an

arbitrary functional form (Cobb-Douglas or Translog), and an AR(1) productivity process. Specifi-

cally, we assume the output of firm i at time t is such that yit = X ′
itβ + ωit, where β ∈ RN is a vector

of parameters to be estimated, and Xit ∈ RN is a vector of inputs that can contain moments and

products of several inputs. This formulation nests the Cobb-Douglas and Translog case. For exam-

ple, a two-inputs vit, kit translog production function is modelled byXit = (vit, kit, v
2
it, k

2
it, vitkit)

′ with

parameters β = (βv, βk, βvv, βkk, βvk)
′. We further assume that the (log) productivity ωit follows an

AR(1) process; that is, ωit = ρωit−1 + ξit. The GMM estimator that we study here is defined as follows:

Definition 8 The GMM estimator is β̂ ∈ RN and ρ̂ ∈ R, so moments E
[
Xit−1ξ̂it

]
and E

[
ω̂it−1ξ̂it

]
are

equal to zero where ω̂it = yit − X ′
itβ̂ = X ′

it(β − β̂) + ωit and ξ̂it = ω̂it − ρ̂ω̂it−1 = (Xit − ρXit−1)
′(β −

β̂) +X ′
it−1(β − β̂)(ρ− ρ̂) + ωit−1(ρ− ρ̂) + ξit.

The remainder of this appendix studies the condition under which the above estimator admits

solutions. To this end, let us study the following system of equations, which defined the estimator

and whose unknowns are β̂ and ρ̂:

32Note that Corr(ṽit, ωit−1) = Corr(mcit − ρmcit−1 + wt − ρwt−1, ωit−1). Intuitively, if input price and marginal cost
(= Pit/µit) are uncorrelated with past values of productivity, this correlation will be equal to zero.

45



 E
[
Xit−1ξ̂it

]
= 0

E
[
ω̂it−1ξ̂it

]
= E

[
Xit−1ξ̂it

]′
(β − β̂) + E

[
ωit−1ξ̂it

]
= 0

⇐⇒

 E
[
Xit−1ξ̂it

]
= 0

E
[
ωit−1ξ̂it

]
= 0

⇐⇒

 E
[
Xit−1X̃

′
it

]
(β − β̂) + E

[
Xit−1X

′
it−1

]
(β − β̂)(ρ− ρ̂) + E [Xit−1ωit−1] (ρ− ρ̂) = 0

E
[
ωit−1X̃

′
it

]
(β − β̂) + E

[
ωit−1X

′
it−1

]
(β − β̂)(ρ− ρ̂) + E

[
ω2
it−1

]
(ρ− ρ̂) = 0

,

where we use E [Xit−1ξit] = 0 and E [ωit−1ξit] = 0, and where we denote X̃it = Xit − ρXit−1. Note that

the first line of the above system of equations corresponds to N equations, while the second line is

just a scalar equation. We haveN +1 equations with unknown (β̂, ρ̂) ∈ RN+1. In general, this system

of equations has multiple solutions, as in the case of one input.
Heuristically, when (β̂, ρ̂) is not too far from the true value (β, ρ), the terms in (β − β̂)(ρ − ρ̂) are

of second order. Ignoring these terms leads to the following reduced system, which can be written in
matrix form:

 E
[
Xit−1X̃

′
it

]
(β − β̂) + E [Xit−1ωit−1] (ρ− ρ̂) = 0

E
[
ωit−1X̃

′
it

]
(β − β̂) + E

[
ω2
it−1

]
(ρ− ρ̂) = 0

⇐⇒

 E
[
Xit−1X̃

′
it

]
E [Xit−1ωit−1]

E
[
ωit−1X̃

′
it

]
E
[
ω2
it−1

] ( β − β̂

ρ− ρ̂

)
= 0,

which admits a unique solution (β̂, ρ̂) = (β, ρ) as long as the (N×N)matrix

 E
[
Xit−1X̃

′
it

]
E [Xit−1ωit−1]

E
[
ωit−1X̃

′
it

]
E
[
ω2
it−1

]
,


is invertible. We conclude that the GMM estimator is locally consistently identified.

Using Revenue Instead of Quantity. The estimator for revenue is as follows:

Definition 9 The GMM estimator is β̂ ∈ RN and ρ̂ ∈ R such that the moments E [Xit−1ς̂it] and

E
[
t̂fprit−1ς̂it

]
are equal to zero where tfprit ≡ ωit + pit, t̂fprit = rit − X ′

itβ̂ = X ′
it(β − β̂) + tfprit and

ς̂it = t̂fprit− ρ̂t̂fprit−1 = (Xit−ρXit−1)
′(β− β̂)+X ′

it−1(β− β̂)(ρ− ρ̂)+tfprit−1(ρ− ρ̂)+pit−ρpit−1+ ξit.

Using the same notation as above and p̃it = pit − ρpit−1, the system of equations that characterized

the above estimator is given by

 E [Xit−1 ς̂it] = 0

E
[
t̂fprit−1 ς̂it

]
= E [Xit−1 ς̂it]

′ (β − β̂) + E
[
tfprit−1 ς̂it

]
= 0

⇐⇒
{

E [Xit−1 ς̂it] = 0

E
[
tfprit−1 ς̂it

]
= 0

⇐⇒

 E
[
Xit−1X̃

′
it

]
(β − β̂) + E

[
Xit−1X

′
it−1

]
(β − β̂)(ρ− ρ̂) + E

[
Xit−1 tfprit−1

]
(ρ− ρ̂) + E [Xit−1p̃it] = 0

E
[
tfprit−1 X̃

′
it

]
(β − β̂) + E

[
tfprit−1 X

′
it−1

]
(β − β̂)(ρ− ρ̂) + E

[
tfpr2it−1

]
(ρ− ρ̂) + E [tfprit−1p̃it] = 0,

where we use the fact that prices at t−1 are unrelated to the innovation ξit and thus thatE
[
tfprit−1 ξit

]
=

E [ωit−1ξit] + E [pit−1ξit] = 0. In general, this system of equations admits multiple solutions, as we
show in the case of one input in Appendix A.4.3. For a heuristic proof, we abstract from the higher
order terms in (β− β̂)(ρ− ρ̂) which we consider small when β̂ and ρ̂ are not too far from their true val-
ues. In that case, the system of equations that characterized the estimator can be written in a matrix
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form as W (B − B̂) +R = 0, where B − B̂ =
(
β − β̂, ρ− ρ̂

)′
;

R =

(
E [Xit−1p̃it]

E
[
tfprit−1 p̃it

] ) and, W =

 E
[
Xit−1X̃

′
it

]
E [Xit−1ωit−1]

E
[
ωit−1X̃

′
it

]
E
[
ω2
it−1

]
,

+

(
0 E [Xit−1pit−1]

0 E
[
pit−1 tfprit−1

] ) ,

which has a solution B̂ = B +W−1R. As in the simple framework, the bias is due to the correlation

of price (adjusted for persistence), p̃it, with past input Xit−1 and tfprit−1 collected in the vector R.

A.5 Revenue Markup and Translog Production Function

We next compare markups from revenue and quantity production functions in a framework with a

translog production function. The main intuition remains valid: the bias of the estimator on revenue

data is equal to the average demand elasticity among firms sharing the same production function.
Assume that the production function is yit = αvit+βv

2
it+ωit, while we maintain the other assump-

tions of our baseline framework. Let us study the bias implied by the use of revenue data in place of
quantity data. Following the same logic as above (especially as in Appendix A.4.2), the coefficients of
the production function estimated on revenue are such that(

α̂

β̂

)
=

(
α

β

)
+ V −1

(
E[pitvit−1]

E[pitv2it−1]

)
, with V =

(
E[vitvit−1] E[v2itvit−1]

E[vitv2it−1] E[v2itv2it−1]

)
.

As for Cobb-Douglas, the estimates are biased. The above equation is the translog equivalent of (4).

Correlation of instruments with output prices causes bias.

In the case of a translog production function, the true markup is such thatµit = (α+2β log Vit)
PitYit
WtVit

,

and, the revenue markup is thus µ̂Rit = α̂+2β̂ log Vit

α+2β log Vit
µit. As pointed out by Bond et al. (2021) and as in

the Cobb-Douglas case, if we assume homogeneous inverse demand elasticities among firms in the

sample (that is, for all i we have pit = −γyit), the revenue markup is equal to one.33 However, in gen-

eral, revenue markups are different from one and contain information on true markups. To see this

formally, assume again that inverse demand elasticities are heterogeneous among firms, such that

for all i by pit = −diityit where there is at least one pair (i, j) such that diit ̸= djjt. As above, the true

markup is given by µit = (1− diit)
−1. In this heterogeneous inverse demand elasticity case, we have α̂

β̂

 =
(
I − E

[
Xit−1X

′
it

]−1 E
[
diitXit−1X

′
it

]) α

β

 ,

where Xit is vector (vit, v2it−1)
′, I is the identity matrix. Revenue markups satisfy

µ̂R
it =

1− (α+ 2β log Vit)
−1

(
α

β

)′ (
E
[
diitXitX

′
it−1

]
E
[
XitX

′
it−1

]−1
)( 1

2 log Vit

) (1− diit)
−1. (14)

33When pit = −γyit, the vector V −1

(
E[pitvit−1]
E[pitv2it−1]

)
= γ

(
α
β

)
and the revenue markup becomes µ̂R

it = (1 −

γ)α+2β log Vit
α+2β log Vit

(1− γ)−1 = 1.
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This markup is in general different from one for at least some firms. To see that clearly, let us

further assume that the inverse demand elasticities are independent of the variable input usage and

its square, such that, for any n,m ∈ N, E
[
diitv

n
itv

m
it−1

]
= E [diit]E

[
vnitv

m
it−1

]
.With these assumptions

in place, one can show that α̂ = α(1 − E [diit]) and β̂ = β(1 − E [diit]). The revenue markup is equal

to µ̂Rit = (1 − E [diit])(1 − diit)
−1, which is different from one since there exists a pair (i, j) such that

diit ̸= djjt. As for the Cobb-Douglas case, the bias is determined by an average of the inverse demand

elasticities.
In the translog case, the average revenue markup is E

[
log µ̂Rit

]
= E [log(µit)] + E

[
log α̂+2β̂ log Vit

α+2β log Vit

]
.

Let us assume that the inverse demand elasticities are heterogeneous across firms in the sample.
From equation (14), we can see that the average of the log revenue markup is equal to zero up to a
Jensen-like inequality:

E
[
log µ̂R

it

]
=− E [log(1− diit)] + . . .

. . .E

log
1− (α+ 2β log Vit)

−1

(
α

β

)′ (
E
[
diitXitX

′
it−1

]
E
[
XitX

′
it−1

]−1
)( 1

2 log Vit

) .

When the inverse demand elasticities are homogeneous, ∀i, diit = γ, then the average log revenue

markup is exactly zero. In general, the relationship between the average revenue and true markup

now depends on the distribution of the variable input log Vit and the extent of the bias in the pro-

duction function estimation. Importantly, the variance of the revenue markup is different from the

variance of the true markup and also depends on the distribution of inputs and the covariance of

input and the true markup. Finally, the correlation between the revenue and the true markup is no

longer equal to one. To gauge the information content of the revenue markup under translog, we rely

on the simulations.

B Derivation and Parametrization of the Simulated Model

B.1 Model and Parametrization

We analyze a single sector, defined as a collection of firms that have the same structural production

function parameters and that face the same input prices.

Demand. We choose a market structure where firms have heterogeneous markups that are deter-

mined by a combination of structural parameters and their market share. Following Atkeson and

Burstein (2008), we implement this by assuming that firms compete in a double-nested CES demand

system. The sector consists of a continuum of markets, where a market is defined as a finite number

of firms that compete oligopolistically with one another. In this setup, the demand faced by market

h, Yht, satisfies at sector price index Pht:
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Pht = Y
− 1

σ
ht D

1
σ
t with Yht =

[
Nh∑
i=1

Y
ε−1
ε

iht

] ε
ε−1

, (15)

where σ denotes the elasticity of substitution across markets,Dt is exogenous aggregate demand,

and market-level output Yht is the aggregate of firm-level output across the Nh firms that operate in

h. Yiht denotes the output of firm i and ε is the elasticity of substitution across goods within a market.

Following Atkeson and Burstein (2008), we assume ε > σ, reflecting that it is easier to substitute

goods across firms than across markets. The inverse demand function for firm i is

Piht =

(
Yiht
Yht

)− 1
ε

Pht, (16)

where Piht is the price of firm i and Pht satisfies the market-level inverse demand (equation 15). Un-

der Cournot competition, firm i in market h maximizes profit by choosing its quantity taking other

firms’ quantity as given – subject to the inverse demand given by the above equation (16). The

quantity-setting firm internalizes that Yht increases and Pht decreases when it raises its own quanti-

ties according to equation (15). The resultant profit-maximizing markup reads as

µiht =
ε

ε− 1

(
1−

ε
σ − 1

ε− 1
siht

)−1

with siht =
PihtYiht
PhtYht

, (17)

where siht is the market share in terms of revenue.34 Markups range from ε/(ε − 1) for a firm whose

market share approaches zero, to σ/(σ − 1) for a monopolist.

Technology. Firms produce using a variable input Viht and a fixed input Kiht, with log-inputs re-

spectively denoted by viht and kiht. The production function for log output yiht is translog:

yiht = ωit + γαviht + γ(1− α)kiht + γ
α(1− α)

2

ϕ− 1

ϕ

(
v2iht + k2iht − 2kihtviht

)
, (18)

where ωit is the log of (Hicks-neutral) total factor productivity, γ measures the degree of returns to

scale, α determines the weight of the variable input in the production function, while ϕ approximates

the elasticity of substitution between the flexible and the fixed input. When ϕ = 1, this production

function nests the Cobb-Douglas specification. Our log production function (18) is motivated by an

approximation around ϕ = 1 of the constant elasticity of substitution production function Yiht =

eωiht(αV
ϕ−1
ϕ

iht + (1− α)K
ϕ−1
ϕ

iht )
ϕ

ϕ−1
γ (see Appendix B.2).

Variable input demand. We next derive the demand for the variable input for the translog produc-

tion function. The firms’ cost minimization problem involves minimizing costsWtViht subject to the

34The Bertrand markup is similar (e.g. Atkeson and Burstein 2008, Grassi 2017, Burstein et al. 2020).
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production function (18). Note that the output elasticity of the variable input is

∂yiht
∂viht

= γα

(
1 + [1− α]

ϕ− 1

ϕ
[viht − kiht]

)
,

such that the first-order condition of the cost minimization problem is:

Wt =MCiht
Yiht
Viht

γα

(
1 + [1− α]

ϕ− 1

ϕ
ln
[
Viht
Kiht

])
, where MCiht is the marginal cost which can rewritten as

Viht =

(
MCiht

Wt

)
γα

(
1 + [1− α]

ϕ− 1

ϕ
ln
[
Viht
Kiht

])
Yiht, (19)

Marginal costs. As firms face an exogenous sequence of the fixed inputKiht, marginal costs can be
derived from the production function (18) and optimal demand for the variable input (19). Inserting

the latter into the former, we get yiht = ωiht + γα ln
[(

MCiht
Wt

)
γα
(
1− [1− α]ϕ−1

ϕ ln
[
Kiht
Viht

])
Yiht

]
+

γ(1− α)kiht + γα1−α
2

ϕ−1
ϕ

[
ln
(
Kiht
Viht

)]2
. Isolating log marginal costs on the left-hand side, we can ex-

press the log marginal costs mciht ≡ ln MCihtas

mciht = ln
[
Wt

γ
Y

1−αγ
αγ

iht Ω
− 1

αγ

iht K
α−1
α

iht

]
− ln

(
1 + [1− α]

ϕ− 1

ϕ
ln
[
Viht

Kiht

])
+

1− α

2

ϕ− 1

ϕ

(
ln
[
Viht

Kiht

])2

. (20)

Equilibrium. We consider an equilibrium given an exogenous sequence for variable input prices

Wt, aggregate demand Dt, productivities ωiht and fixed factors kiht. The equilibrium is defined as a

sequence of markups µiht, prices Piht, output Yiht, log marginal costs mciht, market shares siht, log

variable inputs viht, and market-level output Yht and price Pht such that price is equal to markup

times marginal cost, the demand is satisfies (equations 15 and 16), quantities are set to maximize

profit (equations 17), and the variable input is chosen to minimize cost (equations 19 and 20 in Ap-

pendix B.2).

Calibration. We perform 200 Monte Carlo simulations. In each simulation, we model the behavior

of 1600 firms, which is the average number of firms in two-sector industries in the EAP data. We

divide these firms into 180 markets, the level at which firms compete, and simulate the economy for

40 periods.

There are 13 parameters, each of which we calibrate externally. The parameters are summarized

in Table 7. In calibrating the model, we are constrained by the fact that the true values of many

parameters (such as those of the production function and the productivity process) are in fact the

object of interest in our empirical analysis. Our approach is therefore to assume reasonable values in

line with the literature as an example of a possible quantification.

There are two sources of firm heterogeneity: the firm’s log-endowment of the fixed input kiht and
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Table 7: Parameter Calibration for Simulation
Parameters Value Description

α 0.4 Share of variable input
γ 0.8 Returns to scale
ϕ 1.1 Elasticity of substitution
σ 1.1 Demand elasticity across markets
ε 10 Demand elasticity across firms in a market
N , Nh 180, 8 Number of markets and firms per market
ρw, σw 0.87 , 0.06 AR(1) persistence and std. dev. of Wt

ρD, σD 0.78 , 0.19 AR(1) persistence and std. dev. of P−σ
t Yt

ρω, σω 0.60 , 0.20 AR(1) persistence and std. dev. of firm-level ωit

ρk, σk 0.66 , 0.66 AR(1) persistence and std. dev. of firm-level kit
σ̃η 0.095 std. dev. meas. error on output

the firm’s log-total factor productivity ωit. Both evolve exogenously through log-linear AR(1) pro-

cesses with persistence ρk and ρω, respectively, and are subject to innovations ξk ∼ N(0, σk) and

ξω ∼ N(0, σω). Both sources of firm heterogeneity are similar in that firms with either higher pro-

ductivities or higher exogenous fixed input have, ceteris paribus, greater output. They are different in

that the fixed input is observable, while productivity is not. To calibrate the persistence and volatility

of the fixed factor, we run autoregressive regressions on log capital in the data. We find a persistence

parameter ρk of 0.66 and a volatility of shocks σk of 0.66. We set ρω to 0.6 and set volatility σω to 0.2,

in line with Decker et al. (2020) and Carvalho and Grassi (2019).

There are two aggregate shocks: aggregate demand Dt and the variable input price Wt. We as-

sume both series follow a log-linear AR(1) process with persistence ρD and ρW , respectively, and

shocks ξD ∼ N(0, σD) and ξW ∼ N(0, σW ). To calibrate the process for the variable inputs price, we

estimate an AR(1) process for the price index of intermediate inputs from sector-level manufacturing

data in EU-KLEMS. We run simple AR(1) regressions for the log of the index, and find an autoregres-

sive coefficient ρW of 0.87 at the two-digit sector level when controlling for industry- and year-fixed

effects. Residuals have a standard deviation σW of 0.06. For aggregate demandDt we estimate a sim-

ilar autoregressive process, using the detrended sector-level nominal value added as the dependent

variable.35 We find a high degree of persistence in aggregate demand, with a ρD of 0.78, while the

residuals have a standard deviation of 0.19.

When calibrating the production function, we think of purchased materials as viht and a compos-

ite of all other factors as kiht. We calibrate α to 0.4 to match the average ratio of material purchases

over revenue in EAP-FARE, which is 0.38. We calibrate returns-to-scale parameter γ to 0.8 in order to

have modest decreasing returns to scale, in line with the estimate by Basu and Fernald (1997). We as-

sume an elasticity of substitution ϕ of 1.1, as purchased materials include intermediate inputs from

other firms, which can substitute for in-house production.

We introduce measurement error in observed quantity ỹiht, denoted by ηiht, after computing the

35We detrend Dt using nominal GDP to account both for increases in prices and real output to obtain a stationary
nominal series. Results are similar when detrending with the GDP deflator.
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equilibrium. We assume that ηiht ∼ N(0, σyσ̃η), where σy is the standard deviation of true output

across all firm-years in the sector, and σ̃η is a scalar that determines the magnitude of measurement

error relative to the standard deviation of true output. We calibrate σ̃η to 0.095, in line with the relative

variance of output and fitted values of a regression of quantity on prices, market share, time-fixed

effects and a third-degree polynomial in the firms’ inputs in EAP.

B.2 Translog Approximation

This appendix derives the translog production function (equation 18) as an approximation of a CES

production function around ϕ = 1 with homogeneity of degree γ that is Yiht = Ωiht(α[Viht]
ϕ−1
ϕ + (1−

α)[Kiht]
ϕ−1
ϕ )

ϕ
ϕ−1

γ . To see this, rearrange terms

ln yiht = ωiht +
ϕ

ϕ − 1
γ ln

[
α[Viht]

ϕ−1
ϕ + (1 − α)[Kiht]

ϕ−1
ϕ

]
= ωiht +

ϕ

ϕ − 1
γ ln

α[Viht]
ϕ−1
ϕ

1 +
(1 − α)

α

[
Kiht

Viht

]ϕ−1
ϕ




= ωiht +
ϕ

ϕ − 1
γ ln

[
α[Viht]

ϕ−1
ϕ

]
+

ϕ

ϕ − 1
γ ln

1 +
1 − α

α

(
Kiht

Viht

)ϕ−1
ϕ

 = ωiht + γviht +
ϕ

ϕ − 1
γ ln

α + (1 − α)

(
Kiht

Viht

)ϕ−1
ϕ

 ,

where we move the α back into the log term for the last equality. Rewriting the final term yields

ϕ
ϕ−1γ ln

[
1 + (1− α)

((
Kiht
Viht

)ϕ−1
ϕ − 1

)]
; let us then define f(x) = γ

x ln [1 + (1− α) (Bx − 1)] , where

B = Kiht/Viht and x = (ϕ−1)/ϕ, such that our approximation is around x→ 0. Taking a second-order
approximation yields

f(x) =
γ

x
ln [1 + (1− α) ((exp (x ln B) − 1)] ≈ γ

x
ln
[
1 + (1− α)

(
x ln B − x2[ ln B]2

2

)]
≈γ

x

[
(1− α)

(
x ln B − x2[ ln B]2

2

)
− (1− α)2

2

(
x ln B − x2[ ln B]2

2

)2
]

≈γ

x

[
(1− α)x ln B + α

1− α

2
x2[ln B]2

]
,

where we remove higher-order terms given that we are approximating the function up to a second

order. Hence, the first-order approximation of the generalized CES production function reads yiht =

ωiht + γ ln Viht + γ(1− α) ln
(
Kiht
Viht

)
+ γα1−α

2
ϕ−1
ϕ

[
ln
(
Kiht
Viht

)]2
. After rearranging terms and denoting

by small cap letters the log of a variable, x ≡ ln X, we have the translog production function (18)

with homogeneity of degree γ: yiht = ωiht+ γαviht+ γ(1− α)kiht+ γα
1−α
2

ϕ−1
ϕ

(
v2iht + k2iht − 2kihtviht

)
.
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C Implementation of the Estimation

This appendix describes how we implement the production function estimation. Let us assume that

the observed output of firm i at time t is such that ỹit = X ′
itβ + ωit + ηit, where β ∈ RN is a vector

of parameters to be estimated, and Xit ∈ RN is a vector of inputs that can contain monomes and

products of several inputs. This formulation nests the Cobb-Douglas and Translog case. We assume

further that ηit is a measurement error shock, such that actual output is yit = ỹit − ηit = X ′
itβ + ωit.

Productivity, ωit, follows a Markov process. We assume that we have access to a sample of observed

output ỹit and input usage Xit. Here we assume that we additionally observe price pit and controls

for markups sit.

The first stage consists of purging the observed output from measurement errors. As explained in

Section 2.3, we do so by running a regression of measure output ỹit on time-fixed effects, a polyno-

mial of inputs usage of some order (second or third in practice), price pit, and the additional controls

sit.36 We then compute an estimate of the measurement errors η̂it as the difference of observed out-

put ỹit and the fitted value ŷit, which we interpret as true output.

The estimator of the parameters β̂ is delivered by a numerical algorithm that makes moments

equal to zero. These moments are computed as follows. For a given guess of parameters β̂, we com-

pute ω̂it = yit − β̂Xit. We then estimate the Markov process: in the case of AR(1), we obtain ρ̂ by an

OLS regression. The estimates of the innovation of the AR(1) process are given by ξ̂it = ω̂it − ρ̂ω̂it−1.

The set of instruments Zit is chosen from the vector of input usage Xit or its lag for dynamic and

static input, respectively (see Appendix A.4.2 for an example). Finally, we compute the moments as∑
i,t ξ̂itZit.

D Convergence

We assess the convergence properties of the estimators. In particular, we examine the speed at which

our markup estimates converge to their true values as sample size increases. In the baseline calibra-

tion, we simulate 1600 firms per sector, matching the average sector size in France. However, many

sectors have fewer firms in practice. To determine if markups can be reliably estimated in smaller

samples, we repeat our estimations for samples ranging from 150 to 1600 firms per year, increasing

in increments of 50. Results indicate that precision in estimating the average log markup improves

significantly up to approximately 500-600 firms, beyond which additional increases in sample size

yield limited improvements. Since most sectors in administrative datasets surpass this threshold,

accurately estimating markups appears feasible with administrative datasets that are typically avail-

able.

36When price and quantity are not observed, revenue is used in place of observed output; we do not include the extras
controls pit and sit in the first-stage regression.
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E Additional Tables and Figures

Table 8: Summary Statistics - Within-Sector Moments of the Log Markup Estimates
Mean St. Dev. Median* 25th Pct.* 75th Pct.*

Quantity -0.003 0.536 0.04 -0.312 0.354
(0.008) (0.006) (0.008) (0.011) (0.009)

Revenue 0.072 0.210 -0.026 -0.150 0.124
(0.003) (0.002) (0.004) (0.003) (0.004)

NOTE: Moments are calculated at the sector level and then averaged across the sectors in the data. Single-stage markup estimates.

Parentheses present bootstrapped standard errors of the moment. 147,704 obs. *: Medians and percentiles are expressed in deviation of

sector averages.

Table 9: Correlation between Quantity and Revenue-Based Markups Log Markups
Summary of Within-Sector Correlations Pooled

Average St. Dev. Median 25th Pct. 75th Pct. Overall
Pearson Correlation 0.40 (0.35) 0.45 0.19 0.62 0.12
Pearson Corr. First Diff. 0.55 (0.29) 0.58 0.36 0.78 0.41

Rank Correlation 0.40 (0.29) 0.50 0.25 0.65 0.12
Rank Corr. First Diff. 0.60 (0.17) 0.60 0.40 0.80 0.54

NOTE: The table presents correlations between single-stage revenue- and quantity-based markup estimates. Correlations are calculated
at the two-digit sector in the left-hand panel, and for all observations pooled in the right-hand panel. The summary statistics are averages
of the correlations across sectors. 147,704 observations.
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Table 10: Estimated Material-Output Elasticity for Various Specifications by Sector
Quantity Revenue

Industry NACE Baseline BB-Q ACF BB-R
All (average) - 0.54 0.38 0.40 0.39

(0.29) (0.30) (0.15) (0.14)
Manufacturing of textiles 13 0.45 0.22 0.41 0.44

(0.23) (0.14) (0.16) (0.13)
Manufacturing of wearing apparel 14 0.46 0.36 0.27 0.28

(0.25) (0.16) (0.20) (0.14)
Manufacturing of leather and related products 15 0.38 0.34 0.30 0.26

(0.22) (0.20) (0.19) (0.14)
Manufacturing of wood and products of wood 16 0.58 0.64 0.47 0.49

(0.15) (0.24) (0.14) (0.14)
Manufacturing of paper and paper products 17 0.52 0.35 0.46 0.45

(0.19) (0.09) (0.12) (0.09)
Manufacturing of printing and reproduction 18 0.34 0.19 0.41 0.41

(0.20) (0.12) (0.13) (0.13)
Manufacturing of chemicals and chemical products 20 0.68 0.38 0.48 0.40

(0.40) (0.24) (0.16) (0.12)
Manufacturing of rubber and plastic products 22 0.60 0.41 0.45 0.49

(0.18) (0.11) (0.13) (0.15)
Manufacturing of other non-metallic mineral products 23 0.53 0.50 0.39 0.34

(0.13) (0.25) (0.15) (0.10)
Manufacturing of basic metals 24 0.62 0.72 0.43 0.43

(0.19) (0.15) (0.19) (0.17)
Manufacturing of fabricated metal products 25 0.42 0.28 0.37 0.31

(0.19) (0.41) (0.15) (0.11)
Manufacturing of computer-, electronic products 26 0.71 0.26 0.39 0.34

(0.31) (0.31) (0.13) (0.11)
Manufacturing of electrical equipment 27 0.62 0.42 0.46 0.48

(0.22) (0.17) (0.14) (0.14)
Manufacturing of machinery and equipment 28 0.37 0.53 0.43 0.36

(0.21) (0.38) (0.13) (0.09)
Manufacturing of motor vehicles 29 0.81 0.65 0.52 0.53

(0.21) (0.22) (0.17) (0.14)
Manufacturing of furniture 31 1.15 0.31 0.39 0.38

(0.15) (0.34) (0.10) (0.06)
Manufacturing of other 32 0.43 0.24 0.30 0.30

(0.28) (0.14) (0.13) (0.12)
Repair and installation of machinery and equipment 33 0.31 0.14 0.31 0.31

(0.13) (0.14) (0.11) (0.11)
NOTE: Estimated elasticities of materials on output from the estimation of translog production functions. The headers, “Baseline”, “BB-Q”, “ACF” and “BB-R”, refers to different

specifications. “Baseline”: IV-GMM on observed quantity. “BB-Q” and “BB-R”: dynamic panel estimators. “ACF”: IV-GMM on revenue. See Section 5.1 for details. Translog
specifications have heterogeneous elasticities within industries, with standard deviations presented in brackets. Industry codes refer to two-digit NACE codes. Industry names are

provided in Table 13.
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Table 11: Correlation of Instruments and Price in the Simulations
Instruments viht−1 kiht v2iht−1 k2

iht viht−1kiht
Instrument’s correlation with p̃it .133 -.177 -.126 .169 .041

(.004) (.003) (.004) (.003) (.002)

NOTE: p̃it ≡ pit − ρpit−1 where ρ is the persistence of productivity. The inputs are denoted by v for variable, k for fixed. The table
presents average correlations across the Monte Carlo, simulations while parentheses give the standard deviation.

F Correlation Prices and Instruments

In this appendix we present the correlation between prices and the production function instruments.

Section 2.2.4 shows that revenue-based markup estimates for the translog production function will

be close to true markups if the correlations between prices and the instruments are low. That result

is derived for i.i.d. productivity. If productivity is linear first-order autoregressive, correlation be-

tween the instruments and p̃it ≡ pit − ρpit−1 (where ρ is the persistence of productivity) determines

the correlation between true markups and revenue-based markups. Hence, all correlations here are

between p̃it and the production function estimation instruments.

Table 11 presents the correlations for the baseline simulation. The instruments for the variable

input are its lags, as the identification assumption is that innovations in productivity are orthogonal

to the lagged variable input. The instruments for the fixed factor are just its contemporaneous value,

as the fixed factor is determined exogenously and thus uncorrelated with productivity innovations

to begin with. We calculate the correlations for each of the Monte Carlo repetitions and present

the average correlations in the table. The table shows that the correlations between prices and the

instruments are generally close to zero, ranging from 0.041 for the interaction term to -0.177 for the

square of the fixed factor.

The correlations in the simulations are similar to the correlations in the data. In the data there

are more inputs (and thus instruments); since we estimate the production function separately for

every sector, the correlations are plotted in Figure 6. Horizontal axes give the two-digit industry

codes. From left to right, the figures contain correlations between price innovations and instruments

for linear inputs; for quadratic inputs; and for interacted inputs. Each dot presents a sector level

correlation. Horizontal lines, for reference, give the correlations in the simulations.

The figure shows that the empirical correlations between price innovations and instruments are

either similar to or closer to zero than the simulations. As a result, in the absence of empirical com-

plications such as misspecification of the production function or heterogeneous production func-

tions within sectors, the correlations between revenue-based markup estimates and quantity-based

markup estimates in the data should be similar to the simulations.
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Figure 6: Effect of First-Stage Purging Regression on Markup Estimates
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NOTE: The figure plots the correlation between p̃it ≡ pit − ρpit−1 where ρ is the persistence of productivity, and instruments in the
production function estimation. The instruments are lit, kit, mit−1, oit−1, l2it, k2it, m2

it−1, o2it−1 respectively for the inputs lit, kit, mit,
oit, l2it, k2it, m2

it, o2it, where inputs are denoted by l for labor, k for capital, o for service, and m for material. The horizontal axes give the
two-digit industry for which correlations are calculated. Legends give the input for which the instrument’s correlation is plotted.

G Data Construction

The dataset is constructed from two sources. The first is a panel of the universe of French firms,

which we obtain from Burstein et al. (2020).

The panel is based on FARE, which is an administrative dataset based on data from the tax office

DGFiP. It contains detailed balance-sheet- and income statement information. We also drop firms

with fewer than two employees, as the number of single-employee firms grew rapidly over our sample

due to a regulatory change. The FARE data contains all of the variables for the production function

estimation with the exception of quantities and prices.

For revenue, we use total sales (including exports). This is REDI_R310 in FARE. The wage bill is

the sum of wage payments and social security contributions (REDI_R216 and REDI_R217). Materials,

the variable input in our empirical section, is the sum of intermediate inputs and raw materials, ad-

justed for inventories (REDI_R210, REDI_R212, REDI_R211, and REDI_213). Services include other

purchases, such as marketing and insurance (REDI_214). The capital stock is measured as fixed tan-

gible assets (IMMO_CORP in FARE). Market share is defined as a firm’s total share in sales in its five-

digit NACE industry, which we calculate before outlier treatments are applied. We drop firms with

missing, zero or negative revenue, material purchases, service purchases, wage bills, capital or prices
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and winsorize variables within two-digit industries, and deflate nominal variables using EU-KLEMS

deflators. As in the analytical model, we assume firms within sectors face equal factor prices.

We merge the panel with the administrative survey Enquête Annuelle de Production (EAP). EAP is

a product-level survey by the statistical office (INSEE) and is the French counterpart of the European

PRODCOM survey. It details revenue and quantity sold by 10-digit product code for the universe of

manufacturing firms with at least 20 employees or 5 million euros in revenue. The sample is from

2009 to 2019. We merge EAP to FARE using the siren code, which is a common firm identifier.

The baseline sample is the intersection of the EAP and the FARE dataset. We include all firm-

products unless the firm only acted as an outsourcer or designer, and drop around one-third of firm-

products without quantity data. We define a product as a combination of a 10-digit product code

and a unit of account, because products reported in different units may not be comparable. For each

firm-product we calculate the ratio of revenue over the quantity of the product sold. We then stan-

dardize this unit value by dividing it by the revenue-weighted average price of the 10-digit product

across the sample. As some firms produce multiple products, we define a firm’s price as the sales-

weighted average of standardized prices across the goods that it produces. Quantity is the ratio of

revenue over this price.37 Summary statistics are given in Tables 12 and 13.

Table 12: Summary Statistics
Variable Mean St. Dev. Median 10th Pct. 90th Pct. Observations
FARE
Revenue 16,911 66,723 3,045 544 31,346 175,538
Quantity 14,845 62,121 1,891 236 27,458 175,538
Wage Bill 3,346 12,865 830 194 6,505 175,538
Capital 8,343 35,803 869 114 13,635 175,538
Purchased Materials 7,561 29,763 1,017 116 13,730 175,538
Purchased Services 4,253 22,880 755 120 7,388 175,538

EAP
Quantity 14,845 62,121 1,891 236 27,458 175,538
Standardized Price 9.45 89.29 1.23 0.77 6.25 175,538

NOTE: Nominal values are in thousands of 2010 euros, deflated using EU-KLEMS deflators. Revenue is deflated with the gross output
deflator; purchased inputs are deflated using the intermediate input deflator. Wages and capital tock are deflated using the GDP deflator.
Capital is measured as fixed tangible assets. 38 The data contains 26,143 unique firms across 206 (19) sectors at the five (two) digit level.

37As a robustness check we standardize prices using the revenue-weighted average price at the 8-digit sector level.
These firm-level prices have a 0.89 correlation with our baseline prices.
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Table 13: Sectors (two-digit) in the EAP-FARE Dataset
Manufacturing of ... NACE code Observations
... textiles 13 6,716
... wearing apparel 14 5,200
... leather and related products 15 2,256
... wood and products of wood and cork, except furniture 16 9,599
... paper and paper products 17 6,511
... printing and reproduction of recorded media 18 8,589
... chemicals and chemical products 20 8,498
... rubber and plastic products 22 17,939
... other non-metallic mineral products 23 13,850
... basic metals 24 4,471
... fabricated metal products, except machinery and equipment 25 26,693
... computer, electronic and optical products 26 6,401
... electrical equipment 27 7,575
... machinery and equipment n.e.c. 28 16,738
... motor vehicles, trailers and semi-trailers 29 5,493
... other transport equipment 30 889
... furniture 31 10,844
... other 32 5,094
Repair and installation of machinery and equipment 33 12,182
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