MY561 Half Unit
Social Network Analysis
This information is for the 2018/19 session.
Teacher responsible
Dr Eleanor Power COL 7.09 and Dr Milena Tsvetkova COL 8.03
Availability
This course is available on the MPhil/PhD in Social Research Methods. This course is available with permission as an outside option to students on other programmes where regulations permit.
This course is available to research students only.
Course content
This course focuses on data about connections, forming structures known as networks. Networks and network data describe an increasingly vast part of the modern world, through connections on social media, communications, financial transactions, and other ties. This course covers the fundamentals of network structures, network data structures, and the analysis and presentation of network data. Students will work directly with network data and structure and analyze these data using R.
Social networks have always been at the center of human interaction, but especially with the explosive growth of the internet, network analysis has become increasingly central to all branches of the social sciences. How do people influence each other, bargain with each other, exchange information (or germs), or interact online? A diverse array of deep questions about human behavior can only be answered by examining the social networks encompassing and shifting around us. Network analysis has emerged as a cross-disciplinary science in its own right, and has in fact proven to be of even greater generality and broader applicability than just the social, extending to ecology, physics, genetics, computer science, and other domains.
This course will examine the key papers in the development of social network analysis, and will develop the theory and methodological tools needed to model and predict social networks and use them in social sciences as diverse as sociology, political science, economics, health, psychology, history, or business. The core of the course will comprise the essential tools of network analysis, from centrality, homophily, and community detection, to random graphs, network formation, and information flow. Alongside this we will read a series of substantive and seminal papers, shaped in part by the interests of the students and their various backgrounds, with a particular focus on the difficult task of causal inference in social networks. The course will also provide an introduction to network modelling, analysis, and visualization using R.
Teaching
20 hours of lectures and 10 hours of computer workshops in the LT.
Social networks have always been at the center of human interaction, but especially with the explosive growth of the internet, network analysis has become increasingly central to all branches of the social sciences. How do people influence each other, bargain with each other, exchange information (or germs), or interact online? A diverse array of deep questions about human behavior can only be answered by examining the social networks encompassing and shifting around us. Network
analysis has emerged as a cross-disciplinary science in its own right, and has in fact proven to be of even greater generality and broader applicability than just the social, extending to ecology, physics, genetics, computer science, and other domains.
This course will examine the key papers in the development of social network analysis, and will develop the theory and methodological tools needed to model and predict social networks and use them in social sciences as diverse as sociology, political science, economics, health, psychology, history, or business. The core of the course will comprise the essential tools of network analysis, from centrality, homophily, and community measurement, to random graphs, network formation, information flow, and strategic games. Alongside this we will read a series of substantive and seminal papers, shaped in part by the interests of the students and their various backgrounds, with a particular focus on the difficult task of causal inference in social networks. The course will also provide an introduction to network modeling and analysis using R, and network visualization using R and Gephi.
Formative coursework
Students will be expected to produce 10 problem sets in the MT.
Type: Weekly, structured problem sets with a beginning component to be started in the staff-led lab sessions, to be completed by the student outside of class. Answers should be formatted and submitted for assessment.
Indicative reading
Newman, M.E.J. (2010). Networks: An introduction. Oxford, UK: Oxford University Press.
Scott, J. (2017). Social Network Analysis. Los Angeles: SAGE. 4th edition.
Easley, D., & Kleinberg, J. (2010). Networks, Crowds, and Markets: Reasoning About a Highly Connected World. New York: Cambridge University Press.
Assessment
Take home exam (50%) and in class assessment (50%) in the MT.
Student problem sets will be marked each week, and will provide 50% of the mark.
Key facts
Department: Methodology
Total students 2017/18: Unavailable
Average class size 2017/18: Unavailable
Value: Half Unit
Personal development skills
- Self-management
- Team working
- Problem solving
- Application of information skills
- Communication
- Application of numeracy skills
- Specialist skills