SA4M3E Half Unit
Research Methods for Behavioural Science
This information is for the 2014/15 session.
Teacher responsible
Dr Matteo Galizzi COW.G.09
Availability
This course is compulsory on the Executive MSc in Behavioural Science. This course is not available as an outside option.
Course content
The course aims to introduce students to the main methodological concepts and tools in behavioural science. The course will combine rigorous conceptual discussion with practical applications. To achieve this objective, the course covers: Correlation versus causation: how randomization solves the sample selection bias; Randomized controlled experiments in the lab and the field: principles, issues, taxonomy; Experimental design and behavioural econometrics: between/within design, hypothesis tests, statistical analysis of data, structural estimation; Sampling: sample size, sampling methods, ethics, recruitment; When randomization is not possible: natural experiments, quasi-experiments, difference-in-difference, discontinuity regression design, propensity score matching; Measuring risk and time preferences: principles and experimental tests; Measuring rationality in strategic decision-making: principles of game theory; Measuring social preferences: behavioural game theory; Measuring preferences for goods: experimental auctions; Measuring attitudes and non-conscious mind states: constructing psychometric indexes, inducing moods and emotions, priming.
Teaching
17 hours and 30 minutes of lectures and 5 hours of seminars in the MT.
Formative coursework
Students will be expected to produce 1 piece of coursework in the MT.
Indicative reading
Andersen S, Harrison GW, Lau MI, Rutström EE (2010): Behavioral Econometrics for Psychologists. Journal of Economic Psychology, 31, 553-576.
Andrade EB, Ariely D (2009). The enduring impact of transient emotions on decision making. Organizational Behavior and Human Decision Processes, 109, 1-8 (2009).
Blundell R, Costa-Dias M (2002). Alternative approaches to evaluation in empirical microeconomics. Portuguese Economic Journal, 1, 91-115.
Camerer CF (2003). Behavioral Game Theory: Experiments in Strategic Interaction. Princeton University Press.
Cohen J (1988). Statistical Power Analysis for the Behavioural Sciences. Routledge.
Duflo E, Glennerster R, Kremer M (2007). Using randomization in development economics research: a toolkit. CEPR Discussion Paper No. 6059. Center for Economic Policy Research, London.
Harrison GW, List JA (2004). Field experiments. Journal of Economic Literature, XLII, 1009-1055.
List JA (2006). Field experiments: a bridge between the lab and naturally occurring data. Advances in Economic Analysis and Policy, 6, 8.
List JA, Sadoff S, Wagner M (2011). So you want to run an experiment, now what? Some simple rules of thumb for optimal experimental design. Experimental Economics, 14, 439-457.
Lusk JL, Shogren JF (2007). Experimental Auctions: Methods and Applications in Economic and Marketing Research. Cambridge University Press.
Mead R (1988). The Design of Experiments: Statistical Principles for Practical Applications. Cambridge University.
Rubin DB (1978). Bayesian inference for causal effect: the role of randomization. Annals of Statistics, 6, 34-58.
Assessment
Essay (40%, 2000 words) and take home exam (60%) in the MT.
Key facts
Department: Social Policy
Total students 2013/14: Unavailable
Average class size 2013/14: Unavailable
Controlled access 2013/14: No
Lecture capture used 2013/14: No
Value: Half Unit
Personal development skills
- Leadership
- Self-management
- Team working
- Problem solving
- Application of information skills
- Communication
- Application of numeracy skills
- Commercial awareness
- Specialist skills